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The conventions will mainly follow the book of Peskin and Schroeder [102]. We use the metric
tensor

gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 , (1)

with Greek indices running over 0,1,2,3. We define the antisymmetric tensor so that

ε0123 = +1, ε0123 = −1. (2)

Ambiguities in this definition are a notorious source of sign errors. Repeated indices are summed
in all cases.

Light-cone vectors

Light-cone vectors will be indicated as

aµ =
[
a−, a+, aT

]
. (3)

The dot-product in light-cone components is

a · b = a+b− + a−b+ − aT · bT (4)

The light-cone decomposition of a vector can be written in a Lorentz covariant fashion using
two light-like vectors n+ and n− satisfying n2

± = 0 and n+ ·n− = 1 and promoting aT to a four-vector
aµT = [0, 0, aT ] so that

aµ = a+nµ+ + a−nµ− + aµT , (5)

where

a+ = a · n−,

a− = a · n+,

aT · n+ = aT · n− = 0.

(6)
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iv Notations and conventions

Note that
aT · bT = −aT · bT (7)

We introduce the projector on the transverse subspace

gµνT = gαβ − nα+n
β
− − nα−n

β
+ =


0 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 . (8)

We can define the transverse antisymmetric tensor

ε
αβ
T = ε

αβρσ n+ρn−σ (9)

Note that ε12
T = −ε

21
T = 1.

Dirac matrices

Dirac matrices will be often expressed in the following representations (which is almost the same
as the chiral or Weyl representation)

γ0 =

(
0 1
1 0

)
, γi =

(
0 σi

−σi 0

)
, γ5 =

(
−1 0
0 1

)
. (10)

The above representation is almost precisely the chiral or Weyl representation (see, e.g., Eqs. 3.25
and 3.72 of Peskin and Schroeder [102]. In any case, valid representations can be obtained by
applying a unitary transformation to the matrices of any other representation. In certain sections
of these notes I will use a representation obtained from the chiral representation through the appli-
cation of the orthogonal matrix

U =


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 0

 . (11)

The resulting representation is, explicitly,

γ0 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 , γ3 =


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

 ,

γ1 =


0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

 , γ2 =


0 i 0 0
i 0 0 0
0 0 0 −i
0 0 −i 0

 ,
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γ5 =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1


The reason to choose this representation is to have a nice form of the projectors

P+ =
1
2
γ−γ+, P− =

1
2
γ+γ−. (12)

In fact, together with

PR = (1 + γ5)/2, PL = (1 − γ5)/2

we obtain, explicitly

PRP
+ =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , PLP
+ =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 ,

PRP
− =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 , PLP
− =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0


We will make use of the Dirac structure

σµν ≡
i
2

[
γµ, γν

]
. (13)

Transverse momenta

These notes are written using the so-called “Amsterdam notation,” as done in Piet Mulders’s lec-
tures. In the recent paper [35] a slightly different notation was adopted. Notation differences are
a common source of headaches, but it would be too difficult in these lecture notes to abandon the
Amsterdam notation. Here, however, a correspondence table is provided:
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Amsterdam [35] Description

p k momentum of parton in distribution function

pT k⊥ parton transverse momentum in distribution function

k p momentum of fragmenting parton

kT p⊥ trans. momentum of fragmenting parton w.r.t. final hadron

KT P⊥ trans. momentum of final hadron w.r.t. fragmenting parton

Ph⊥ PhT transverse momentum of final hadron w.r.t. virtual photon
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1
Introduction

This first part is partially based on Ref. [17].

We are still profoundly far from fully understanding QCD and nucleons. If we take a look at
the list of nucleons properties in the Particle Data Group tables, we can read what is the nucleons
mass, spin, quark content, charge, magnetic moment, charge radius... It is fair to say that, with
the partial exception of the mass, we cannot explain any single one of these quantities from first
principles. The fundamental reason is that we are unable to explain confinement (see, e.g., [111]).

One of the ways we can follow to better understand QCD and confinement is to study the
inner structure of the nucleon in higher and higher details. In these years, thanks to the contri-
butions of HERMES, COMPASS and the JLab experiments, we are reaching the opportunity to
reconstruct multi-dimensional pictures of the nucleon. The knowledge of the multi-dimensional
structure allows the analysis of properties otherwise inaccessible: quark-gluon correlations, effects
of final-state interactions, spin-orbit and spin-spin correlations, and much more. The situation
may be compared to protein studies: our present knowledge of the proton structure is limited to
one dimension and can be compared to knowing the sequence of amino acids of proteins. It is
an extremely important piece of information, but insufficient to understand them. Starting from
the 1960s, it has become possible to reconstruct their 3D structure. These advances literally rev-
olutionized our understanding of protein chemistry. Hopefully, we can expect to do the same in
hadronic physics: we are opening the era of “stereo femtophysics.”
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FF(∆)

GTMD(x,~k⊥, ∆)

GPD(x, ∆)TMD(x,~k⊥)

PDF(x)TMSD(~k⊥)

TMFF

Charge

∆ = 0
∫
dx

∫
d2k⊥

(~k⊥, ∆)

Figure 1.1: Representation of the projections of the GTMDs into parton distributions and form factors
(picture from ref. [89])

1.1 Two words on Wigner distributions

Partons inside the proton can have a specific momentum and a specific position (with respect to
some definition of the center of the proton). Their state can be described by Wigner distributions in
six-dimensions (three position and three momentum coordinates) [27,76]. Wigner distributions are
the quantum-mechanical constructions that are closest to a classical probability density in phase-
space. Strictly speaking, due to the Heisenberg uncertainty principle, they cannot be considered as
probability densities and are not positive definite. For this reason, they are often defined as quasi-
probability distributions. However, they can be used to compute the expectation value of any
physical observable. In this sense, they represent the maximal knowledge of the partonic structure.
They are equivalent to knowing the complete wavefunction of partons inside the nucleon.

Projections of Wigner distributions on some of the available dimensions do have a probabilis-
tic interpretation (see Fig. 1.1). Of these, we will take into consideration in these lectures only
Transverse-Momentum-dependent parton Distribution functions (TMDs). In order to be able to
define them, we need to distinguish a longitudinal direction from two transverse directions. To
observe the internal structure of the proton we need a hard probe (i.e., with high four-momentum).
This requirement allows us to define a longitudinal direction: it could be defined as the direction
of the probe in the rest-frame of the nucleon, or the direction of the nucleon in the center-of-mass
frame of nucleon and probe (or in any other frame where proton and probe are collinear). The
transverse plane is the one orthogonal to the longitudinal direction.

If we integrate over all coordinates and the two transverse components of momentum we obtain
a projection of the Wigner distributions on the longitudinal momentum only. These projections
are well studied and have a name: they correspond to the standard Parton Distribution Functions
(PDFs). They represent the probability of finding a parton inside a nucleon with a given fraction of
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1.2 Transverse-momentum distributions 3

the nucleons longitudinal momentum. In this sense, they are pictures of the partonic structure of
the nucleon in only one dimension in momentum space. At this point, it is worthwhile remarking
that this interpretation is valid at the parton-model level, i.e., when the nucleon constituents can
be treated approximately as free for the purpose of calculating the interaction with the probe. In
the formal QCD treatment, this interpretation is modified and corresponds to the parton-model
concept only in the lowest order of perturbation theory [49, 53]. In this sense, we can say that
parton distributions are approximate images of the partonic structure.

1.2 Transverse-momentum distributions

If we integrate Wigner distributions over all coordinates, we obtain the so-called transverse-momentum
distributions (TMDs). They represent pictures of three-dimensional densities in momentum space.

Historically, partonic transverse momentum has been discussed as early as in the Seventies
(see, e.g., [47, 114]), few years after the birth of the parton model [30, 63]. Transverse momentum
can be generated also by the radiation of gluons: the first analysis of this contribution was done
in 1979 [101], few years after the birth of QCD. The first study that put together the nonpertur-
bative and perturbative components of TMDs in a formally solid way was an article of Collins
and Soper in 1981 [56]: we could probably identify the birth of TMDs in this work. We started
using the name TMDs only very recently. For a while we have been talking about transverse-
momentum-dependent parton distribution functions (TMD PDFs), then simplified it to TMDs (see,
e.g., Ref. [18]). Especially in the field of low-x physics, the name “unintegrated parton distribution
functions” is also commonly used (see, e.g., [81]).

In spite of this relatively long history, TMDs represent still a largely unexplored field. There
are many nontrivial questions that do not have an answer yet. For instance, we still do not have
a clear understanding of the detailed shape of the proton (in momentum space). At present, we
know that experimental data are consistent with a Gaussian distribution with a width (i.e., an aver-
age transverse momentum) of about 0.6 GeV at an energy scale of 2 GeV. Roughly speaking, half
of it is coming from the primordial transverse momentum of the quark and half is acquired through
perturbative gluon radiation. There are indications that the transverse-momentum distribution be-
comes larger at lower longitudinal momentum. We also dont know if there is a difference in the
distribution of partons with different flavors: is one flavor more concentrated in the center and the
other in the sides? Or are the flavors uniformly mixed? There are first feeble indications from
experimental measurements and from lattice-QCD computations that the down quark distribution
is larger than the up [96, 98].

The above considerations apply when we average over the nucleons spin direction. There is
even more fun when spin is taken into account. For instance, suppose the spin of the nucleon is
moving toward us and its spin is pointing upwards: it turns out that we see up quarks moving
preferentially to the right and down quarks to the left. In terms of images in momentum space, the
distributions are not cylindrically symmetric anymore, but distorted in opposite ways for up and
down quarks (see Fig. 1.2).

It is worthwhile describing the progress made in understanding this kind of effect. It was first
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Figure 1.2: The up and down quark density distortion in transverse-momentum space, obtained by studies
of the Sivers function [22].

proposed by D. Sivers in 1990 as a way to explain large left-right asymmetries observed in pion-
nucleus collisions [112]. For this reason we nowadays normally speak about the Sivers effect, and
the Sivers function describes the left-right distortion in the distribution of partons. For more than
a decade, this effect was thought to vanish due to time-reversal symmetry. Starting from a model
calculation in 2002, theory studies made clear that the Sivers function could be nonzero [44]. In
2004, the first experimental evidence of a nonzero Sivers effect was reported by the HERMES
collaboration [2], recently confirmed by the COMPASS collaboration [4]. These break-throughs
forced a profound revision of the QCD treatment of transverse momentum distributions, still par-
tially underway [49]. For instance, one of the consequences is that the Sivers function in deep
inelastic scattering (where an electron strikes a quark inside the nucleon) has an opposite sign
compared to the Sivers function in DrellYan processes (where an antiquark annihilates a quark
inside the nucleon). In other words, an antiquark probe should see a distortion exactly opposite to
Fig. 5. This striking prediction, due to John Collins [52], should be confirmed (of falsified!) in the
next few years by planned experiments (e.g., COMPASS at CERN, AnDY at Brookhaven National
Lab).

1.3 Impact-parameter distributions

If we integrate the Wigner distributions over transverse momenta and the longitudinal coordinate,
we obtain the so-called impact-parameter distributions [45]. They reveal the distribution of partons
as a function of their longitudinal momentum and their transverse position with respect to the center
of momentum of the nucleon (i.e., the relevant transverse coordinates). If we integrate even over
the longitudinal momentum, we obtain pictures of the partonic structure in transverse coordinate
space, as seen from the point of view of a hard probe hitting the nucleon. As far as we know today,
this is probably as close as we can get to the everyday concept of a photo of the nucleon. These
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Figure 1.3: The up and down quark density distortion in impact parameter space space, obtained by studies
of the Pauli form factor.

distributions can be computed using models or lattice QCD techniques. But the good news is that
they can also be reconstructed from experimental data. In fact, they are directly related to two-
dimensional Fourier transforms of the nucleon form factors. Historically, nucleon form factors
provided the first indications that protons and neutrons are not elementary particles. For instance,
when in 1933 the first SternGerlach experiment on the proton was performed, most physicists
expected the magnetic moment of the proton (i.e., the value of the magnetic form factor GM(t) at
t = 0) to be one nuclear magneton. Shockingly, it turned out to be 2.5 magnetons. Form-factor
measurements started in the 1950s led to the first estimates of the proton radius (to be precise, one
if its possible definitions), fixing it at around 0.8 femtometers. After fifty years of studies, we have
made some steps forward, but we have also unearthed many mysteries. For instance, the proton
seems to shrink in a muonium atom (made by a proton and a muon): the radius of the proton in
a muonium atom is 0.84184(67) fm, which differs by five standard deviations from the hydrogen
value of 0.8768(69) fm [103]. These estimates are inferred from Lamb-shift measurements, not
from direct measurement of form factors. From the point of view of nucleon imaging, we can
measure the transverse densities of partons, as seen from a hard probe, and their associated radius.
We cannot reach the precision quoted above, but the information we obtain is much richer. For
instance, measuring the Dirac and Pauli form factors of protons and neutrons and performing a
two-dimensional Fourier transform [94], we can obtain the images of the quark density in impact
parameter space. As for momentum distributions, we can first take a look at the average over
nucleon polarization. From the information we have on the proton and neutron form factors and
using some assumptions, we can conclude that the up distribution is narrower than the down.
When the orientation of the nucleon spin is fixed, we discover that the up and down distributions
are distorted in opposite ways. The distortion of the down quarks seems to be much larger than the
up.

When looking at the distributions in impact parameter space, we are tempted to compare them
with the momentum distributions. First of all, it must be stressed that the two distributions are not
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k +
1

2
∆

P −
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2
∆

k −
1

2
∆

P +
1

2
∆

Figure 1.4: Kinematics for the fully unintegrated generalized quark-quark correlator

connected by a Fourier transform. Secondly, it must be kept in mind that the impact-parameter
distributions obtained from the form factors refer to the valence quark combinations (i.e., quark
minus antiquarks). Finally, the impact-parameter distributions obtained from form factors are
integrated over the longitudinal momentum fraction x.

In order to overcome these limitations, we have to turn our attention to a generalization of the
form factors that embodies also the dependence on x. Such quantities are called generalized parton
distributions (GPDs) (see, e.g., [60, 74]). They are hybrids between a parton distribution function
and a form factor. They effectively are like tomographic slices of the form factors at a fixed value
of the momentum fraction x. The x dependence of GPDs is extremely important, in particular it is
essential to quantify partonic angular momentum, which can be related to an x-weighted integral
of the GPDs corresponding to the Pauli and Dirac form factors [75].

In order to study all these interesting issues, we need first of all to get acquinted with the
underlying formalism.

1.4 More formally...

This part is based on Refs. [89,93]. In order to formally define the objects of interest, we may start
from the generalized fully-unintegrated quark-quark correlator for a spin-1/2 hadron, which can be
defined as

W(P, k,∆, S ) =
1
2

∫
d4ζ

(2π)4 eik·ζ 〈P + ∆/2, S | ψ̄(−ζ/2)ψ(ζ/2) |P − ∆/2, S 〉 . (1.1)

The correlator W depends on the spin S , the average momentum P of the initial and final hadron,
the momentum transfer ∆ to the hadron, and the average quark momentum k. (For the kinematics
we also refer to figure 1.4.) For the moment, we did not introduce in the definition the gauge links
which are necessary to render the object gauge invariant. The above object can be parametrized
in terms of fully-unintegrated generalized parton distribution functions, also called generalized
parton correlation functions (GPCFs).

In all “parton distributions” we will take into account we start with integrating the above cor-
relator over k−. This means that the quark fields inside the definition are taken at ζ− = 0 (same
“light-cone time”):

W(P, x, k⊥,∆, S ) =
∫

dk−W(P, k,∆, S ) =
1
2

∫
dζ−d2ζT

(2π)3 eik·ζ 〈P+∆/2, S | ψ̄(−ζ/2)ψ(ζ/2) |P−∆/2, S 〉
∣∣∣∣
ζ+=0

.

(1.2)



Pr
el

im
in

ar
y
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This object can be parametrized in terms of generalized transverse-momentum-dependent parton
distribution functions (GTMDs). There are in total 64 of them (complex-valued). For reference,
16 of them are “leading-twist” (see later). Sometimes, these functions are called also the “mother
distributions.”

Setting ∆+ → 0 and taking a two-dimensional Fourier transform with respect to ∆T of the
above correlator we obtain

W(P, x, k⊥, b⊥, S ) =
1

(2π)2

∫
d2∆⊥e−ib⊥∆⊥W(P, x, k⊥,∆⊥, S )

∣∣∣∣
∆+=0

. (1.3)

This correlator can be parametrized in terms of Wigner distributions. At the moment, there is no
idea on how to actually measure all the quantities defined so far. Although in the introduction we
described Wigner distributions as depending on six variables (three positions and three momenta),
here in reality we see that they depend on three momenta and only two positions. This is due to the
peculiarity of the component ∆+: even if we perform a Fourier transform with respect to ∆+ we do
not obtain a probabilistic interpretation of the result.

Setting ∆→ 0 in Eq. 1.2, we obtain the transverse-momentum-dependent correlation function

Φ(P, x, k⊥, S ) = W(P, x, k⊥, 0, S ) =
1
2

∫
dζ−d2ζT

(2π)3 eik·ζ 〈P, S | ψ̄(−ζ/2)ψ(ζ/2) |P, S 〉
∣∣∣∣
ζ+=0

. (1.4)

which can be parametrized in terms of Transverse-Momentum Distributions (TMDs), in total 32
of them (of which 8 are leading-twist). As all parton distributions, they can be “measured” in a
broad sense. To be precise, we should say that they are extracted from experimental measurements
through well-defined prescriptions that have however a certain degree of arbitrariness (for instance,
at NLO in the M̄S scheme).

Integrating Eq. (1.2) over transverse momentum (i.e., the quark fields are now are taken at
ζ− = ζT = 0), we obtain

F(P, x,∆, S ) =
∫

dk−W(P, k,∆, S ) =
1
2

∫
dζ−

2π
eik·ζ 〈P+∆/2, S | ψ̄(−ζ/2)ψ(ζ/2) |P−∆/2, S 〉

∣∣∣∣
ζ+=0,ζT=0

.

(1.5)
This correlator can be parametrized in terms of Generalized Parton Distribution functions (GPDs),
in total 32 of them (8 leading-twist). Setting ∆+ → 0

Integrating Eq. (1.4) over transverse momentum or equivalently setting ∆→ 0 in Eq. (1.5), we
obtain

Φ(P, x, S ) = F(P, x, 0, S ) =
∫

d2k⊥Φ(P, x, k⊥, S ) (1.6)

The procedure of integrating over transverse momentum is actually delicate and in principle it is
possible only at “parton-model” level, i.e., when neglecting higher-order QCD corrections. The
above correlator can be parametrized in terms of Parton Distribution Functions (PDFs). In total
there are 9 of them (3 leading-twist).

If we integrate Eq. ?? over x the quark field are taken at ζ = 0. We obtain

F(P,∆) =
1

P+
〈P + ∆/2, S | ψ̄(0)ψ(0) |P − ∆/2, S 〉 . (1.7)
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The correlator can be parametrized in terms of 22 Form Factors (FF) (7 leading twist).
Finally, if we integrate Eq. (1.6) over x or alternatively set ∆ to zero in Eq. (1.7), we obtained

the fully-integrated quark-quark correlator

F(P) =
1

P+
〈P, S | ψ̄(0)ψ(0) |P, S 〉 . (1.8)

which can be parametrized in terms of hadronic charges. There are in total 4 of them (3 leading
twist). They are the scalar, vector, axial, tensor charges of the nucleon.
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Inclusive DIS

I will not repeat here all the details of the analysis of inclusive DIS but summarize only some of
the relevant results that will be useful for later.

We consider the process
`(l) + N(P)→ `(l′) + X, (2.1)

where ` denotes the beam lepton, N the nucleon target, and where four-momenta are given in
parentheses. We neglect the lepton mass. We denote by M the mass of the nucleon. As usual we
define q = l − l′ and Q2 = −q2 and introduce the variables

xB =
Q2

2 P · q
, y =

P · q
P · l

=
Q2

xBs
. (2.2)

In this lectures, we will systematically neglect all correction of order M/Q, unless otherwise
specified.

The spin vector of the target is denoted by S . Our definition of the azimuthal angle φS of the
outgoing hadron and the target spin is shown in Fig. 3.1 and consistent with the Trento conven-
tions [19]. The helicity of the lepton beam is denoted by λe. S ⊥ is the transverse parts of S with
respect to the photon momentum. S ‖ is the component of S in the negative z-direction in Fig. 3.1,
i.e. positive S ‖ corresponds to the target spin pointing against the virtual photon.

The cross section for polarized electron-nucleon scattering can be written in a general way as
the contraction between a leptonic and a hadronic tensor

d3σ

dxB dy dφS
=

α2

2 s xB Q2 Lµν(l, l′, λe) 2MWµν(q, P, S ), (2.3)
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where α = e2/4π. The formula above is valid in the so-called “single-photon exchange approxi-
mation.” Some QED radiative corrections can be included without modifying this formula [3], but
effects such as double-photon exchange are left out [109].

Considering the lepton to be longitudinally polarized, in the massless limit the leptonic tensor
is given by

Lµν =
∑
λ′e

(
ū̄(l′, λ′e) γµ u(l, λe)

)∗ (
ū̄(l′, λ′e) γν u(l, λe)

)
= −Q2gµν + 2

(
lµl′ν + l′µlν

)
+ 2i λe εµνρσ lρl′σ.

(2.4)

Ex. 1
Compute the leptonic tensor using Mathematica and the FeynCalc package (www.feyncalc.org).
The most important instructions are

<< HighEnergyPhysics‘FeynCalc‘

ScalarProduct[l, lp] = Qˆ2/2;

Amp0 = Contract[

Spinor[l].(-I e GA[\[Mu]]).((1 + GA[5] \[Lambda])/2).Spinor[lp]]

Amp0bar = ComplexConjugate[Amp0] /. \[Mu] -> \[Nu]

FermionSpinSum[Amp0 Amp0bar]

Lept = FermionSpinSum[Amp0 Amp0bar]

/. {DiracTrace -> Tr} /. {\[Lambda]ˆ2 -> 1}

It may be convenient (for reasons that will be clear when considering the structure of the
hadronic tensor) to write the formulas in a more different way, by introducing the normalized
vectors

q̂µ =
qµ

Q
, (2.5)

t̂µ =
2xB

Q
√

1 + γ2

(
Pµ −

P · q
q2 qµ

)
, (2.6)

l̂µ = −
gµν⊥ lν
|gµν⊥ lν|

(2.7)

with the projectors on the transverse space is defined as

gµν⊥ = gµν + q̂µq̂ν − t̂µt̂ν, (2.8)

ε
µν
⊥ = ε

µνρσt̂ρq̂σ. (2.9)



Pr
el

im
in

ar
y

Inclusive DIS 11

It turns out that

lµ =
Q
2

q̂µ +
(2 − y)

2y
t̂µ +

Q
√

1 − y
y

l̂µ (2.10)

from which we can obtain

Lsym
µν =

2Q2

y2

[
−

(
1 − y +

y2

2

)
g⊥µν + 2(1 − y) t̂µt̂ν

+ 2(1 − y)
(
l̂⊥µl̂⊥ν +

1
2

g⊥µν
)
+ 2(2 − y)

√
1 − y

(
t̂µl̂ν + t̂ν l̂µ

)] (2.11)

The leptonic tensor contains all the information on the leptonic probe, which can be described
by means of perturbative QED, while the information on the hadronic target is contained in the
hadronic tensor

2MWµν(q, P, S ) =
1

2π

∑
X

∫
d3PX

(2π)3 2P0
X

(2π)4 δ(4)
(
q + P − PX

)
Hµν(P, S , PX), (2.12)

Hµν(P, S , PX) =
〈
P, S Jµ(0) X

〉〈
X Jν(0) P, S

〉
. (2.13)

The state X symbolizes any final state, with total momentum PX. It is integrated over since in
inclusive processes the final state goes undetected.

In general, the structure of the hadronic tensor can be parametrized in terms of structure func-
tions.

Let us start from unpolarized DIS. We can use the vectors qµ and Pµ. Let me define the parity-
reversal transformation

Lρσ =



1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


(2.14)

The following conditions must be fulfilled:

Hermiticity: W∗
µν(q, P, S ) = Wνµ(q, P, S ), (2.15a)

parity: LρµLσν Wρσ(q, P, S ) = Wµν(q̃, P̃,−S̃ ), (2.15b)

time-reversal: LρµLσν W∗
ρσ(q, P, S ) = Wµν(q̃, P̃, S̃ ) (2.15c)

where q̃ν = Lνρq
ρ and so forth for the other vectors (i.e., change sign to the spatial components of

the vectors).
We could build the combinations

2MWµν = 2M
[
A gµν + B qµqν +C

PµPν

M2 + D
Pµqν + qµPν

M2

]
, (2.16)

where each of the terms can depend on the scalar products Q2 and P ·q, or more conveniently on Q2

and xB. A combination such as iεµνρσPρqσ is excluded only by parity invariance and should be taken
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into account when considering, e.g., neutrino scattering. A combination such as P{µεν}αρσPρqσS α

is forbidden by time-reversal invariance.
Finally, electromagnetic gauge invariance requires that

qµWµν = qνWµν = 0. (2.17)

From this condition, it follows that

D = −
P · q
q2 B, C =

(P · q
q2

)
B +

M2

q2 A. (2.18)

Therefore, there are only two independent structure functions.
In terms of our normalized vectors and projectors we can write

2MWµν(q, P, S ) =
1
xB

[
−gµν⊥ FT (xB,Q2) + t̂µt̂νFL(xB,Q2)

]
. (2.19)

In the case of polarized inclusive DIS, given the constraints, we can introduce four structure
functions. There are multiple definitions of the structure functions. A possible one is

2MWµν(q, P, S ) =
1
xB

[
− gµν⊥ FT (xB,Q2) + t̂µt̂νFL(xB,Q2)

+ iS Lε
µν
⊥ 2xB (g1(xB,Q2) − γ2g2(xB,Q2))

+ it̂[µε
ν]ρ
⊥ S ρ2xBγ (g1(xB,Q2) + g2(xB,Q2))

] (2.20)

where the involved vectors and tensors are defined in the same way as in Piet Mulders’s notes. The
connection with the standard unpolarized structure functions is

FT (xB,Q2) = 2xBF1(xB,Q2), (2.21)

FL(xB,Q2) = (1 + γ2)F2(xB,Q2) − 2xBF1(xB,Q2). (2.22)

The contraction of the leptonic and hadronic tensors leads to the following expression for the
inclusive DIS cross-section

dσ
dxB dy dφS

=
2α2

xByQ2

y2

2 (1 − ε)

{
FT + εFL + S ‖λe

√
1 − ε2 2xB (g1 − γ

2g2)

− |S⊥|λe

√
2 ε(1 − ε) cos φS 2xBγ (g1 + g2)

}
, (2.23)

where the structure functions on the r.h.s. depend on xB and Q2 (i.e. P · Q and q2). We also
introduced the ratio ε of longitudinal and transverse photon flux in

ε =
1 − y

1 − y + 1
2y2

, and γ =
2MxB

Q
(2.24)

It is often necessary, especially for experimental reasons, to distinguish also the component of
S parallel or orthogonal to the lepton beam instead of the virtual photon. However, the difference
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between the two quantities is M/Q suppressed. A thorough discussion about this point has been
presented, e.g., in Ref. [61].

Ex. 2
Eq. (2.23) does not yet look as the standard results in the literature, e.g., Eq. (2.7) in [86]. Check
the correspondence by expressing the results with respect to the lepton beam direction, making use
of the following relations

S γ

‖
= cos θ S e

‖ + sin θ |Se
⊥| cosψ,

|Sγ⊥| cos φS = cos θ |Se
⊥| cosψ − sin θ S e

‖

and

cos θ =
1 + γ2y/2√

1 + γ2
=

1 − (1 − y)ε
√

1 − ε2
,

sin θ = γ

√
1 − y − γ2y2/4

1 + γ2 =
εy

√
2 ε(1 − ε)

2.1 DIS in the parton model

For the treatment of inclusive DIS, it is convenient to choose a frame where the proton and photon
momenta have no transverse components. In terms of light-cone vectors, it means

Pµ = P+nµ+ +
M2

2P+
nµ− , (2.25)

qµ = −xBP+nµ+ +
Q2

2xBP+
nµ− . (2.26)

The spin vector of the target can then be decomposed as

S µ = S L
(P · n−) nµ+ − (P · n+) nµ−

M
+ S µ

T . (2.27)

It is particularly convenient to work in a reference frame where

xP+ = Q/
√

2. (2.28)
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Ex. 3
Derive the following expressions of the involved momenta in the frame we are using

Pµ =

[
xBM2

Q
√

2
,

Q

xB
√

2
, 0

]
(2.29a)

qµ =
[

Q
√

2
, −

Q
√

2
, 0T

]
(2.29b)

lµ =

 Q

y
√

2
,

(1 − y)Q

y
√

2
,

Q
√

1 − y
y

, 0

 , (2.29c)

l′µ =

 (1 − y)Q

y
√

2
,

Q

y
√

2
,

Q
√

1 − y
y

, 0

 . (2.29d)

The phenomenology of DIS taught us that at sufficiently high Q2 we can assume that the scat-
tering of the electron takes place off a quark of mass m inside the nucleon. The final state X
can be split in a quark with momentum k plus a state X with momentum PX. Considering the
electron-quark interaction at tree level only, the hadronic tensor can be written as

2MWµν(q, P, S ) =
1

2π

∑
q

e2
q

∑
X

∫
d3PX

(2π)3 2P0
X

∫
d3k

(2π)3 2k0 (2π)4 δ(4)
(
P + q − k − PX

)
×

〈
P, S ψ̄̄i(0) X

〉〈
X ψ j(0) P, S

〉
γ
µ
ik

(
/k + m

)
kl γ

ν
l j,

(2.30)

where k is the momentum of the struck quark, the index q denotes the quark flavor and eq is the
fractional charge of the quark. Note that, for simplicity, we omitted the flavor indices on the
quark fields. The integration over the phase space of the final-state quark can be replaced by a
four-dimensional integral with an on-shell condition,∫

d3k
2k0 −→

∫
d4k δ

(
k2 − m2

)
θ
(
k0 − m

)
, (2.31)

so that the hadronic tensor can be rewritten as

2MWµν(q, P, S ) =
∑

q

e2
q

∑
X

∫
d3PX

(2π)3 2P0
X

∫
d4k δ

(
k2 − m2

)
θ
(
k0 − m

)
× δ(4)

(
P + q − k − PX

) 〈
P, S ψ̄̄i(0) X

〉〈
X ψ j(0) P, S

〉
γ
µ
ik

(
/k + m

)
kl γ

ν
l j.

(2.32)

Next, we Fourier transform the Dirac delta function according to

δ(4)
(
P + q − k − PX

)
−→

∫
d4ξ

(2π)4 ei (P+q−k−PX)·ξ (2.33)

and we introduce the momentum p = k − q to obtain

2MWµν(q, P, S ) =
∑

q

e2
q

∑
X

∫
d3PX

(2π)3 2P0
X

∫
d4p δ

((
p + q

)2
− m2

)
θ
(
p0 + q0 − m

)
×

∫
d4ξ

(2π)4 ei (P−p−PX)·ξ 〈
P, S ψ̄̄i(0) X

〉〈
X ψ j(0) P, S

〉
γ
µ
ik

(
/p + /q + m

)
kl γ

ν
l j.

(2.34)
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kk
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Figure 2.1: The handbag diagram, describing the hadronic tensor for inclusive DIS at Born level.

Finally, we use part of the exponential to perform a translation of the field operators and we use
completeness to eliminate the unobserved X states, so that

2MWµν(q, P, S ) =
∑

q

e2
q

∫
d4p δ

((
p + q

)2
− m2

)
θ
(
p0 + q0 − m

) ∫ d4ξ

(2π)4 e−ip·ξ

×
(〈

P, S ψ̄̄i(ξ) ψ j(0) P, S
〉
γ
µ
ik

(
/p + /q + m

)
kl γ

ν
l j

)
.

(2.35)

The hadronic tensor can be written in a more compact way by introducing the quark-quark
correlation function Φ

2MWµν(q, P, S ) =
∑

q

e2
q

∫
d4p δ

((
p + q

)2
− m2

)
θ
(
p0 + q0 − m

)
× Tr

[
Φ(p, P, S )γµ

(
/p + /q + m

)
γν

] (2.36)

where

Φ ji(p, P, S ) =
1

(2π)4

∫
d4ξ e−ip·ξ〈P, S ψ̄̄i(ξ) ψ j(0) P, S

〉
=

∑
X

∫
d3PX

(2π)3 2P0
X

〈
P, S ψ̄̄i(0) X

〉〈
X ψ j(0) P, S

〉
δ(4)

(
P − p − PX

)
,

(2.37)

As the quark fields should carry a flavor index that we omitted, also the correlation functions are
flavor dependent and they should be indicated more appropriately asΦq. A graphical representation
of the hadronic tensor at tree level in the parton model is given by the so-called handbag diagram,
depicted in Fig. 2.1.

We parametrize the quark momentum p in the following way

pµ =
[

p2 + |pT |
2

2xP+
, xP+, pT

]
. (2.38)

In our approach, we assume that neither the virtuality of the quark, p2, nor its transverse momentum
squared, |pT |

2, can be large in comparison with the hard scale Q2. Under these conditions, the
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quark momentum is soft with respect to the hadron momentum and its relevant component is xP+.
In Eq. (2.36), neglecting terms which are 1/Q suppressed, we can use an approximate expression
for the delta function

δ
((

p + q
)2
− m2

)
≈ δ(p+ + q+) ≈ P+ δ(x − xB) (2.39)

and replace
d4 p = d2 pT dp− P+ dx (2.40)

and obtain

2MWµν(q, P, S ) ≈
∑

q

e2
q

∫
d2pT dp− dx

P+

2P · q
δ (x − xB)

× Tr
[
Φq(p, P, S ) γµ

(
/p + /q + m

)
γν

]
=

∑
q

e2
q

1
2

Tr
[
Φq(xB, S ) γµ

P+

P · q
(
/p + /q + m

)
γν

]
(2.41)

where we introduced the integrated correlation function

Φ
q
ji(x, S ) =

∫
d2pT dp− Φq

ji(p, P, S )
∣∣∣∣∣
p+=xP+

=

∫
dξ−

2π
e−ip·ξ〈P, S ψ̄̄

q
i (ξ) ψq

j(0) P, S
〉∣∣∣∣∣
ξ+=ξT=0

.

(2.42)

Here, the subscript and superscript q stands for the quark flavor.
Finally, from the outgoing quark momentum, p + q, we can select only the minus component

and obtain the final form for the hadronic tensor at leading twist

2MWµν(q, P, S ) ≈
∑

q

e2
q

1
2

Tr
[
Φq(xB, S ) γµγ+γν

]
. (2.43)

A few words to justify the last approximation are in order. The dominance of the minus component
is most easily seen in the infinite momentum frame, where p−+ q− is of the order of Q, while
p++ q+ = 0, and pT and m are of the order of 1. However, if we perform a 1/Q expansion of the
full expression, including the correlation function Φq [starting from Eq. (2.50)], we would be able
to check that in any collinear frame the dominant terms arise only from the combination of plus
component in the correlation function and minus components in the outgoing quark momentum.

2.2 The integrated correlation function

At this point, we need to analyze the structure of the correlation function Φq (in the following, we
will omit the flavor superscript q).

To get more insight into the information contained in the correlation function, which is a Dirac
matrix, we can decompose it in a general way on a basis of Dirac structures. Each term of the
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decomposition can be a combination of the Lorentz vectors p and P, the Lorentz pseudovector S
(in case of spin-half hadrons) and the Dirac structures

1, γ5, γ
µ, γµγ5, iσµνγ5,

where σµν = i[γµ, γν]/2. The spin vector can only appear linearly in the decomposition. Moreover,
each term of the full expression has to satisfy the conditions of Hermiticity and parity invariance

Hermiticity: Φ(p, P, S ) = γ0Φ†(p, P, S ) γ0, (2.44a)

parity: Φ(p, P, S ) = γ0Φ( p̃, P̃,−S̃ ) γ0. (2.44b)

To simplify the discussion, let’s first consider an unpolarized target. The most general decom-
position is

Φ(p, P) = M A1 1 + A2 /P + A3 /p +
A4

M
σµνPµpν, (2.45)

where the amplitudes Ai are real scalar functions Ai = Ai(p · P, p2) with dimension 1/[m]4. The
above expression is what we could call the “doubly unintegrated correlation function” (see, e.g.,
Ref. [48]).

In reality, the above expression is incomplete, because on top of the vectors p, P we should also
take into account the vector n− which is related to the direction of the gauge link (see Sec. 3.8).
Because of this, new structures appear in the decomposition of Eq. (2.50) [65]. The full decompo-
sition for a nucleon target has been studied in Ref. [66]. For an unpolarized target we obtain [21]

Φ(p, P|n−) = M A1 1 + A2 /P + A3 /p +
A4

M
σµνPµpν

+
M2

P · n−
/n− B1 +

iM
2P · n−

[/P, /n−] B2 +
iM

2P · n−
[/p, /n−] B3

+
1

P · n−
εµνρσγµγ5Pνpρn−σ B4.

(2.46)

If we keep only the leading terms in 1/P+ (which in the end will turn out to appear in the cross
section with a leading power in 1/Q, i.e. leading twist), we obtain

Φ(p, P) ≈ P+ (A2 + xA3) /n+ + P+
i

2M
[
/n+, /pT

]
A4. (2.47)

For our purposes, we are interested in the calculation of the object entering the expression of the
hadronic tensor, what we called the integrated correlation function, Eq. (2.42). In the unpolarized
case it is very simple (now reintroducing also the flavor index q):

Φq(x) = f q
1 (x)/n+/2 (2.48)

where we introduced the integrated parton distribution function

f q
1 (x) =

∫
d2pT dp2 d(2p · P) δ

(
p2

T + x2M2 + p2 − 2xp · P
) [

Aq
2 + xAq

3

]
, (2.49)
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The function f q
1 (x) is usually referred to as the unpolarized parton distribution, and it is often

denoted also as simply q(x) (where q stands for the quark flavor).
If we now extend the analysis to the polarized case, the most general decomposition of the

correlation function Φ imposing Hermiticity and parity invariance is [97, 107]

Φ(p, P, S ) = M A1 1 + A2 /P + A3 /p +
A4

M
σµνPµpν + iA5 p · S γ5

+ M A6 /S γ5 + A7
p · S
M

/P γ5 + A8
p · S
M

/p γ5 + iA9 σµνγ5S µPν

+ iA10 σµνγ5S µpν + iA11
p · S
M2 σµνγ5Pµpν + A12

εµνρσγ
µPνpρS σ

M
,

(2.50)

where the amplitudes Ai real scalar functions Ai = Ai(p · P, p2) with dimension 1/[m]4. We don’t
give here the full expression when considering also the vector n−, which can be found in Ref. [66].

The general expression of the integrated correlation function becomes

Φ(x, S ) =
1
2

{
f1 /n+ + S L g1Lγ5 /n+ + h1

[
/S T , /n+

]
γ5

2

}
, (2.51)

where we introduced the integrated parton distribution functions

f1(x) =
∫

d2pT dp2 d(2p · P) δ
(
p2

T + x2M2 + p2 − 2xp · P
)

[A2 + xA3] , (2.52a)

g1L(x) =
∫

d2pT dp2 d(2p · P) δ
(
p2

T + x2M2 + p2 − 2xp · P
)

×

[
−A6 −

( p · P
M2 − x

)
(A7 + xA8)

]
, (2.52b)

h1(x) =
∫

d2pT dp2 d(2p · P) δ
(
p2

T + x2M2 + p2 − 2xp · P
)

×

[
−A9 − xA10 +

p2
T

2M2 A11

]
. (2.52c)

The function gq
1L (after reinserting the quark flavor superscript) is the helicity distribution of parton

q and it can be denoted also as ∆q.1 The function h1 is known as the parton transversity distribution;
in the literature it is sometimes denoted as δq, ∆T q, although in the original paper of Ralston and
Soper [107] it was called hT .

The individual distribution functions can be isolated by means of the projection

Φ[Γ] ≡
1
2

Tr (ΦΓ) , (2.53)

where Γ stands for a specific Dirac structure. In particular, we see that

f1(x) = Φ[γ+](x), (2.54a)

g1L(x) = Φ[γ+γ5](x), (2.54b)

h1(x) = Φ[iσi+γ5](x). (2.54c)

1In the Amsterdam literature this function is usually denote as g1. Here, however, we prefer to name it g1L to
clearly distinguish it from the structure function defined in Eq. (2.20)
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The leading-twist part of the correlator Φ can be projected out using the projector

P+ =
1
2
γ−γ+, (2.55)

Before the interaction with the virtual photon, the relevant components of the quark fields are the
plus components, ψ+ = P+ ψ. They are usually referred to as the good components.

Finally, it is useful to define the matrix F =
(
P+Φγ

+
)T

, i.e. the Dirac transpose of the leading-
twist part of the correlation function, and observe that

F(x, pT )i j =

∫
dξ−

2π
√

2
e−ip·ξ〈P (ψ+)

†

i (ξ) (ψ+) j(0) P
〉∣∣∣∣∣
ξ+=0

=
1
√

2

∑
X

∫
d3PX

(2π)3 2P0
X

〈
X (ψ+)i(0) P

〉∗〈X (ψ+) j(0) P
〉

× δ
((

1 − x
)
P+ − P+X

)
(2.56)

This matrix describes a probability to find a (good projection of a) quark with a certain chirality
inside the target. For any Dirac spinor a

〉
, the expectation value

〈
a F a

〉
must be positive (it a

modulus squared). In mathematical terms, this means that the matrix is positive semidefinite, i.e.
the determinant of all the principal minors of the matrix has to be positive or zero. This property
will prove to be essential in deriving bounds on the components of the correlation function, i.e. the
parton distribution functions.

The correlation function is a matrix in the parton chirality space and depends on the target spin.
By introducing the helicity density matrix of the target

ρ(S )Λ1Λ
′
1
=

1
2

(1 + S · σ)
Λ1Λ

′
1
=

1
2

 1 + S L S x − iS y

S x + iS y 1 − S L

 , (2.57)

we can obtain the correlation function from the trace of the helicity density matrix and a new
matrix in the quark chirality space ⊗ the target spin space:(

P+Φ(x, S )γ+
)
χ′1χ1

= ρ(S )Λ1Λ
′
1

(
P+Φ(x)γ+

)Λ′1Λ1

χ′1χ1

. (2.58)

We will refer to the last term of this relation as the matrix representation of the correlation function
or, more simply, as the correlation matrix. Fig. 3.6 shows pictorially the position of the spin
indices.

Starting from Eq. (2.51) and using the relation

ΨU + S LΨL + S xΨx + S yΨy = ρ(S )Λ1Λ
′
1

ΨU + ΨL Ψx − iΨy

Ψx + iΨy ΨU − ΨL


Λ′1Λ1

(2.59)

we can cast the correlation function in the matrix form

(
P+Φ(x)γ+

)Λ′1Λ1
=


(
f1(x) + g1(x) γ5

)
P+ h1(x)

(
γx − iγy

)
γ5P+

h1(x)
(
γx + iγy

)
γ5P+

(
f1(x) − g1(x) γ5

)
P+

 . (2.60)
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χ
1

χ′
1

Λ′
1 Λ

1
Figure 2.2: Illustration of the position of the indices of the correlation matrix.

The correlation function is a 4 × 4 Dirac matrix. However, due to the presence of the projector
on the good components of the quark fields, the leading-twist part spans only a 2×2 Dirac subspace.
This is evident if we express the Dirac structures of Eq. (3.37) in the chiral or Weyl representation
(see also the discussion around Eq. (3.41)).

The resulting matrix is [13, 14]

F(x)Λ
′
1Λ1

χ1χ
′
1

=



f1(x) + g1L(x) 0 0 2h1(x)

0 f1(x) − g1L(x) 0 0

0 0 f1(x) − g1L(x) 0

2h1(x) 0 0 f1(x) + g1L(x)


. (2.61)

where the inner blocks are in the hadron helicity space (indices Λ′1Λ1), while the outer matrix is
in the quark chirality space (indices χ′1χ1). Note that because of the inversion of the quark indices,
the lower left block has χ′1 = R, χ1 = L and vice versa for the upper right block. Since this matrix
must be positive semidefinite, we can readily obtain the positivity conditions

f1(x) ≥ 0, (2.62a)

|g1L(x)| ≤ f1(x), (2.62b)

|h1(x)| ≤ 1
2

(
f1(x) + g1L(x)

)
. (2.62c)

The last relation is known as the Soffer bound [113].
The probabilistic interpretation of the functions f1 and g1L is manifest, since they occupy the

diagonal elements of the matrix and they are therefore connected to squares of probability ampli-
tudes

f1(x) =
1
2

(
F(x)

1
2

1
2

R R + F(x)
1
2

1
2

L L

)
g1L(x) =

1
2

(
F(x)

1
2

1
2

R R − F(x)
1
2

1
2

L L

)
(2.63)

On the other hand, the transversity distribution is off-diagonal in the chirality basis. This should
make clear that it is chiral odd and that it does not describe the square of a probability amplitude,
but rather the interference between two different amplitudes

h1(x) = 1
2 F(x)

1
2 −

1
2

R L (2.64)

The transversity distribution recovers a probability interpretation if we choose the so-called
transversity basis, instead of the helicity basis, for both quark and hadron [71,72]. The transversity
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R R

1
2

1
2

+

L L

1
2

1
2

(a)

R R

1
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2
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L L

1
2

1
2

(b)

Figure 2.3: Probabilistic interpretation of the unpolarized distribution function f1 (a), and of the helicity
distribution function g1L (b).

basis is formed by the “transversity up” and “transversity down” states. They can be expressed in
terms of chirality eigenstates

u↑ = 1
√

2
(uR + uL) , u↓ = 1

√
2

(uR − uL) . (2.65)

The same relation holds between the hadron transversity and helicity states.
In the new basis, the scattering matrix takes the form

F(x)Λ
′
1Λ1

χ1χ
′
1

=



f1(x) + h1(x) 0 0 g1L(x) + h1(x)

0 f1(x) − h1(x) g1L(x) − h1(x) 0

0 g1L(x) − h1(x) f1(x) − h1(x) 0

g1L(x) + h1(x) 0 0 f1(x) + h1(x)


, (2.66)

and clearly the transversity distribution function can be defined as

h1(x) =
1
2

(
F(x)↑↑

↑↑
− F(x)↑↑

↓↓

)
. (2.67)

2.3 DIS structure functions in the parton model

Once we have determined the general decomposition of the correlation function, we can compute
the cross section using Eqs. (2.43) and (2.3).

Ex. 4
Using the leptonic tensor calculated in Ex. 1, compute the cross-section for polarized inclusive
DIS in the parton model with Mathematica. The relevant instructions are
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GAp = GS[Momentum[nm]];

GAm = GS[Momentum[np]];

GA5 = DiracGamma[5];

ScalarProduct[nm, np] = 1;

ScalarProduct[l, np] = 1/Sqrt[2] (((2 - y) Q)/(2 y) - Q/2);

ScalarProduct[l, nm] = 1/Sqrt[2] (((2 - y) Q)/(2 y) + Q/2);

ScalarProduct[lp, np] = 1/Sqrt[2] (((2 - y) Q)/(2 y) + Q/2);

ScalarProduct[lp, nm] = 1/Sqrt[2] (((2 - y) Q)/(2 y) - Q/2);

Phi = (f1 + Sl g1 GA5 + h1 GA5 .GS[Momentum[St]]).(GAm/2)

MW = 1/2 1/2 (Tr[Phi.GA[\[Mu]].GAp .GA[\[Nu]]]) //

Collect[#, {f1 D1, h1perp H1perp}, Simplify] &

(\[Alpha]ˆ2 y)/(2 Qˆ4) Contract[Lept 2 MW] // Simplify

The final result of the cross section can be obtained from the expressions of the structure func-
tions, which is summarized in the following relations:

F1 =
1
2

∑
q

e2
q f q

1 (xB), (2.68)

FL = 0, (2.69)

g1 =
1
2

∑
q

e2
q gq

1L(xB), (2.70)

g1 + g2 = 0. (2.71)

A few remarks about the above results. First of all, we see that the transversity distribution does
not occurr in any of the above structure functions. This is due to the specific Dirac structure of
the transversity term in the correlation function, Eq. (2.51): that term contains two Dirac matrices,
and it enters a trace with three more Dirac matrices in Eq. (2.43). Therefore, the term disappears.
Another interesting observation is that the structure-function combination g1 + g2 vanishes. We
mention that the function becomes nonzero when going to the subleading-twist level in the analysis
of the correlation function. Finally, the longitudinal structure function FL vanishes, and it remains
zero also at the next-to-leading-twist (NLT) level. To obtain a nonzero function we have to consider
QCD corrections of order αS (set to zero at the parton-model level) or go to the NNLT level.
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(r1)

(r3)

(r3)(r2)

(r4)
(v1) (v2) (v3)

Figure 2.4: Cut diagrams representing real and virtual corrections to the γ∗q→ q process. Some Hermitean
conjugate diagrams are not shown.

2.4 DIS beyond the parton model

In these short lectures, we did not have time to study much of the QCD corrections to the parton-
model picture. For what concerns inclusive DIS and collinear PDFs, I refer to the excellent lectures
of Marco Stratmann. The most recent and authoritative reference on this issue is the book by John
Collins [49].

In very concise and qualitative terms, let me just mention that the inclusion of QCD corrections
to the parton model leads to the important results of factorization and evolution, the second being
almost a direct consequence of the first. QCD factorization theorems are central to understanding
high energy hadronic scattering cross sections in terms of the fundamentals of perturbative QCD.
In addition to providing a practical prescription for order-by-order calculations, derivations of
factorization provide a solid theoretical foundation for concepts like PDFs.

The parton-model approach relies on the assumption that we can separate a hard scattering (in
DIS, the scattering of an electron off a quark) from a nonperturbative part of the process. When
dealing with the hard-scattering side, we can consider the parton as being approximately free and
on-shell (the parton is in reality off-shell, but its off-shellness is small compared to the hard scale
involved in the scattering, such as the Q2 of the photon). This situation allows us to compute the
hard scattering using purely perturbative QED and QCD. The success of this approach gives a
heuristic proof of the validity of the assumptions.

However, using the theoretical framework offered by QCD it is possible to give proofs of the
approximate validity of the parton model approach and improve it. Explicit examples are usually
given at the so-called “one-loop” level. In DIS, this requires taking into consideration the diagrams
shown in Fig. 2.4.

These diagrams contain all sorts of divergences: ultraviolet and infrared (both collinear and
soft). Ultraviolet divergences can be taken care of using renormalization. This requires the use
of a regularization scheme (e.g. dimensional regularization) and implies the introduction of a
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renormalization scale µR. Divergences are then “hidden” inside the values of the parameters of the
theory, which are fixed by experimental measurements. Physical observables cannot depend on
the renormalization scale, leading to renormalization-group equations and, e.g., the running of the
coupling constant.

Infrared divergences are of two types: collinear (when the gluon is emitted collinear to the
quark) and soft (when the gluon carries vanishing momentum). For DIS, soft divergences cancel
in the sum of virtual and real diagrams. Collinear divergences require the use of a regularization
scheme (e.g., dimensional regularization or mass regularization) and the introduction of a factor-
ization scale µF (often choosen for convenience to be equal to µR). Divergences are then hidden
inside nonperturbative objects involved in the process (e.g., collinear parton distribution functions).
Physical observables cannot depend on the factorization scale, leading to evolution equations of
the PDFs.

Factorization theorems show that the above procedure can be explicitly followed and general-
ized to an arbitrary number of gluon insertions. Eventually, they demonstrate that, order by order,
the cross section for, e.g., DIS might be written schematically as

dσ ∼ |H|2 ⊗ Φ(x). (2.72)

The precise field-theoretic definitions of the correlation function Φ(x) emerges naturally from fac-
torization. In the hard part |H|2, all propagators must be off-shell by order the hard scale Q so that
asymptotic freedom applies, and small-coupling perturbation theory is valid, with non-factorizing
contributions suppressed by powers of Q.

Such theorems have been worked out in detail only for a few processes (DIS, Drell-Yan pro-
cesses, e+e− annihilation). For instance, there exhist no complete factorization proof for hadron-
hadron collisions into hadrons (see Sec. 14.7 in the book of Collins [49]).

Finally, already at the level of DIS and collinear PDFs there is the question of the gauge invari-
ance of parton distribution functions.

So far we used the following definition for the correlation function

Φi j(p, P, S ) =
1

(2π)4

∫
d4ξ eip·ξ〈P, S ψ̄̄ j(0) ψi(ξ) P, S

〉
(2.73)

or alternatively

Φi j(x, S ) =
∫

dξ−

2π
e−ip·ξ〈P, S ψ̄̄

q
i (ξ) ψq

j(0) P, S
〉∣∣∣∣∣
ξ+=ξT=0

. (2.74)

with p+ = xP+.
It turns out that something is missing. The reason can be easily understood: the correlator as

defined above is not gauge invariant, because the two quark field operators are at two different
positions. If we perform a local (Abelian for now) gauge transformation on the fields

ψ(ξ)→ eiα(ξ) ψ(ξ) (2.75)

the correlator evidently changes. This is something to worry about because the parton distribution
functions composing the correlator can be extracted from experimental measurements and they
should be gauge invariant.
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To fix the problem, we have to insert a gauge link or Wilson line in between the quark fields,
with the following gauge transformation properties

L(ξ1, ξ2)→ eiα(ξ1)L(ξ1, ξ2) e−iα(ξ2). (2.76)

In principle, any gauge link (i.e., running along any path) can make the definition of the cor-
relator gauge-invariant. However, in QCD different gauge links give rise to physically different
correlators (because a closed QCD gauge link is not equal to unity). From the appropriate cal-
culations (which are partially covered in Piet Mulders’s notes) it turns out that the proper gauge
invariant definition of the quark-quark correlator is

Φi j(x, S ) =
∫

dξ−

2π
e−ip·ξ〈P, S |ψ̄ j(0)Ln−

(0,+∞)L
n−
(+∞,ξ) ψi(ξ)|P, S 〉

∣∣∣∣∣
ξ+=0

(2.77)

where the gauge links (Wilson lines) are defined as

L
n−
(0,+∞) = P exp

[
−ig

∫ ξ−

∞−
dη−A+(η−, 0, 0T )

]
≈ 1 − ig

∫ ξ−

∞−
dη−A+(η−, 0, 0T ) (2.78)

The graphical representation of the gauge link involved in DIS is given in Fig. 2.5

Shape of the gauge link

ξ−

ξT

ξ−

ξT

Φ(x, S) ∼
〈
P, S ψ̄̄(0)U[0,∞−] U[∞−,ξ−]ψ(ξ) P, S

〉

Figure 2.5: The path of the gague link in inclusive DIS. It could be viewed as formed by two infinitely long
straight links, which however cancel to give the net result of a finite, straight link along the minus light-cone
direction.

If we stop at the single-gluon level, the situation may be understood already at the level of the
diagrams in Fig. 2.4. We know that only the sum of all diagrams is gauge invariant. Some diagrams
vanish in certain gauges. In light-cone gauges, for instance, only the first diagrams on the left give
a nonzero contribution. The gluon polarization sum in that gauge is

dµν(l; n−) = −gµν +
lµnν− + lνnµ−

l+
. (2.79)

In this gauge, it’s easy to operate a kind of separation as the one shown in Fig. 2.7, since the starting
diagrams are already of the desired form and the other diagrams do not contribute. In Feynman
gauge, the polarization sum includes only the first term on the r.h.s. of Eq. (2.79). However,
the contributions corresponding to the second term are recovered in the calculation of the other
diagrams in Fig. 2.4.

The gauge link can be derived by calculating the leading-twist contributions of diagrams of the
type shown in Fig. 2.6 and their Hermitean conjugates. Let us see roughly how this happens. Let’s
take a look at the first diagram of Fig. 2.6 . We could write it as

2MW (a)
µν ∝

∫
dp− d2 pT d4l Tr

(
γα

/k − /l + m
(k − l)2 − m2 + iε

γνΦ
α
A(p, p − l)γµ (/k + m)

)∣∣∣∣∣
k=p+q

(2.80)
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P

k − Pk − l − P

q

l

k − l

p− l

k

P

k − Pk − l − P

q

p − l − l′ l l′

(a) (b)

Figure 2.6: Examples of graphs contributing to the gauge link.

where we introduced

ΦαAi j(p, p − l) =
∫

d4ξ

(2π)4

d4η

(2π)4 eip·ξ eil·(η−ξ)〈P, S ψ̄̄i(0) gAα(η)ψ j(ξ) P, S
〉

(2.81)

so that

2MW (a)
µν ∝

∫
dp−d2 pT dl+ d2 lT

∫
d4ξ

(2π)4

dη− d2ηT

(2π)3 eip·ξei l·(η−ξ)

× 〈P, S |ψ(0)γµγ+γα
/k − /l + m

(k − l)2 − m2 + iε
γνgAα(η)ψ(ξ)|P, S 〉

∣∣∣∣∣∣
η+=0

,

(2.82)

where ΦαA is made explicit, the l− integrations is performed. In the expression after the second
equal sign, it is understood that p+ = x P+.

The quark propagator reads explicitly

i
/k − /l + m

(k − l)2 − m2 + iε
≈ i

(/k + m) − γ− l+ − /lT

−2 l+ k− − (kT − lT )2 − m2 + iε
. (2.83)

Now, we perform a simplification that goes under the name of “eikonal approximation” and
consists simply in taking into account only the leading parts of the momenta of the quark after
the photon scattering. As we know, the − components are the leading ones. Therefore, the quark
propagator in the upper part of the diagram becomes

i(/p + /q − /l + m)
(p + q − l)2 − m2 + iε

≈ i
(p + q)−γ+

−2l+(p + q)− + iε
=

i
2

γ+

−l+ + iε
(2.84)

In the last step it is essential that to have (p+ q)− ≥ 0. This condition is guaranteed by the fact that
we want to have an outgoing quark with momentum p + q in the final state. The above expression
is often referred to as an eikonal propagator.

The crucial observation at this point is that in the spirit of the eikonal approximation, the only
possibility to have a nonzero result is if γν = γ−

. . . (/p+/q+m)γνγ+ . . . ≈ . . . (p+q)−γ+γνγ+ . . . = . . . (p+q)−γ+γ−γ+ . . . = . . . 2(p+q)−γ+ . . . (2.85)
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We approximate then the propagator with the standard eikonal propagator, see Eq. (2.84)

i
/k − /l + m

(k − l)2 − m2 + iε
≈

i
2

γ+

−l+ + iε
. (2.86)

We can use steps similar to what is described in Eq. (2.85) selecting γα to be only γ− and conse-
quently Aα to be A+

γ+γα
/k − /l + m

(k − l)2 − m2 + iε
γνgAα(η) ≈ γ+

1
2

γ− γ+

−l+ + iε
γνgA+(η) = −γ+

gA+(η)
l+ − iε

γν (2.87)

Then ∫
dl+ d2 lT

dη− d2ηT

(2π)3 ei l·(η−ξ) 〈P, S |ψ(0)γµγ+ γν
gA+(η)
l+ − iε

ψ(ξ)|P, S 〉
∣∣∣∣∣
η+=0

(2.88)

and using ∫
d2 lT

d2ηT

(2π)2 ei lT (ηT−ξT ) =

∫
d2ηT

(2π)2 (2π)2 δ2(ηT − ξT ) (2.89)∫
dl+

ei l+ (η−−ξ−)

l+ − iε
gA+(η) = 2π i gA+(η) θ(η− − ξ−) (2.90)

we obtain

2MW (a)
µν ∝

∫
dp− d2 pT

∫
d4ξ

(2π)4 eip·ξ 〈P, S |ψ(0) γµγ+ γν (−ig)
∫ ξ−

∞−
dη− A+(η) ψ(ξ)|P, S 〉

∣∣∣∣∣∣
η+=0; ηT=ξT

.

(2.91)
By comparing this expression with Eq. (??), we can see that it corresponds to the O(g) term in the
expansion of the longitudinal part of the Wilson line L−[∞,ξ] multiplying ψ(ξ) in Eq. (3.125). The
result of the diagram in Fig. 2.6b with two A+-gluons gives theO(g2) term, etc. From the Hermitean
conjugate diagram of Fig. 2.6a one obtains the O(g) term in the expansion of the longitudinal part
of the Wilson line L−[0,∞] following ¯ψ(0). Summing all these contributions we get

Φi j(x, pT ) =
∫

dξ− d2ξT

(2π)3 eip·ξ 〈P|ψ̄ j(0)Ln−(0−,∞−; 0T )Ln−(∞−, ξ−, ξT )ψi(ξ)|P〉
∣∣∣∣∣
ξ+=0

(2.92)

If we choose at this point a light-cone gauge, where the A+ vanish, the Wilson line can be
reduced simply to unity.

One final comment at this point: already when considering single-gluon corrections, another
class of divergences appear, the so-called light-cone or rapidity divergences. It is beyond the
scope of these lectures to give a detailed explanation of these divergences. Let me just say that,
when performing the calculation in the light-cone gauge, these divergences arise from the second
term on the r.h.s. of Eq. (2.79), containing 1/l+. In different gauges, these divergences appear in
other diagrams. Similarly to soft infrared divergences, these divergences exist already when one
defines collinear PDFs in inclusive DIS. However, they cancel when summing the contributions
corresponding to real and virtual diagrams. Graphically, these divergences can be connected to
the presence of infinitely long gauge links. However, in the case of collinear PDFs the two gauge
links Ln−

(0,+∞) and Ln−
(+∞,ξ) cancel each other, with the net effect of reducing to a finite link Ln−

(0,ξ), as
depicted in Fig. 2.5.
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(a) (b)

Figure 2.7: (a) Example of higher-order diagrams that can give rise to the gauge link. (b) Factorization into
gauge-link contributions.
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Figure 2.8: (a) Comparison between experimentally measured F2 from Ref. [10] and the theoretical LO
formula, with (dashed line) or without (solid line) the correction (1 + R)/(1 + γ2). (b) The same but using
the LO formula with NLO PDFs.

2.5 Some phenomenology
Let us see if we can reproduce some experimental data using the formulas obtained so far. As an
example, we take the DIS data of Ref. [10]. They are relatively old, but still in use in global fits of
PDFs.

We can recover the data from the HEPDATA database (http://hepdata.cedar.ac.uk/). We can
use the formulas for our structure functions in the parton model, i.e.,

F2(xB,Q2) =
1 + R
1 + γ2 FT (xB,Q2) ≈ FT (xB,Q2) =

∑
q

e2
q f q

1 (xB,Q2). (2.93)

R ≡
FL

FT
(2.94)

For the PDFs, we can use the MSTW08 set [91]. We can choose the LO set to be consistent with
our formula. The results obtained from the theoretical formula are depicted in Fig. 2.8.
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Semi-inclusive DIS

We consider now the process

`(l) + N(P)→ `(l′) + h(Ph) + X, (3.1)

where ` denotes the beam lepton, N the nucleon target, and h the produced hadron, and where
four-momenta are given in parentheses. We neglect the lepton mass. We denote by M and Mh

respective masses of the nucleon and of the hadron h. As usual we define q = l − l′ and Q2 = −q2

and introduce the variables

xB =
Q2

2 P · q
, y =

P · q
P · l

, zh =
P · Ph

P · q
. (3.2)

We consider the case where the detected hadron h has spin zero or where its polarization is not
measured. Ph⊥ is the transverse parts Ph with respect to the photon momentum.

The cross section for one-particle inclusive electron-nucleon scattering can be written as

2Eh d6σ

d3Ph dxB dy dφS
=

α2

2sxBQ2 Lµν(l, l′, λe) 2MWµν(q, P, S , Ph), (3.3)

or equivalently as

d6σ

dxB dy dzh dφS d2Ph⊥
=

α2

4zhsxBQ2 Lµν(l, l′, λe) 2MWµν(q, P, S , Ph). (3.4)

To obtain the previous formula, we made use of the relation d3Ph/2Eh ≈ dzh d2Ph⊥/2zh.
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y

z

x

hadron plane

lepton plane

l0
l S?

Ph

Ph?
φh

φS

Figure 3.1: Definition of azimuthal angles for semi-inclusive deep inelastic scattering in the target rest
frame. Ph⊥ and S ⊥ are the transverse parts of Ph and S with respect to the photon momentum [19].

The hadronic tensor for one-particle inclusive scattering is defined as

2MWµν(q, P, S , Ph) =
1

(2π)4

∑
X′

∫
d3PX′
2P0
X′

2π δ(4)
(
q + P − PX′ − Ph

)
Hµν(P, S , PX′ , Ph), (3.5)

Hµν(P, S , PX′ , Ph) =
〈
P, S Jµ(0) Ph,X

′〉〈Ph,X
′ Jν(0) P, S

〉
. (3.6)

3.1 The unpolarized case

The biggest difference between constructing the decomposition of the hadronic tensor in inclusive
and semi-inclusive DIS is that we cannot impose the same condition of time-reversal invariance.
To be more precise, time-reversal invariance still holds, but does not correspond to the third trans-
formation below, which we denote now as “naive time-reversal”. The origin of the difference is that
we are now considering final-states (the outgoing hadron, the state Ph,X

′
〉
) and the application

of time-reversal requires also the reversal of initial and final states, which is not correctly included
in naive time-reversal. Naive time-reversal is time-reversal without the switching of initial and
final states. Alternatively, it is the simple change of sign of the time component of all vectors (and
pseudovectors).

Hermiticity: W∗
µν(q, P, S ) = Wνµ(q, P, S ), (3.7a)

parity: LρµLσν Wρσ(q, P, S ) = Wµν(q̃, P̃,−S̃ ), (3.7b)

naive time-reversal: LρµLσν W∗
ρσ(q, P, S ) = Wµν(q̃, P̃, S̃ ) (3.7c)

In unpolarized semi-inclusive DIS, the hadronic tensor can be parametrized in terms of 5 struc-



Pr
el

im
in

ar
y

3.1 The unpolarized case 31

ture functions:

2MWµν(q, P, S ) =
2zh

xB

[
− gµν⊥ FUU,T (xB, zh, P2

h⊥,Q
2) + t̂µt̂νFUU,L(xB, zh, P2

h⊥,Q
2)

+
(
t̂µĥν + t̂νĥµ

)
Fcos φh

UU (xB, zh, P2
h⊥,Q

2) +
(
ĥµĥν + gµν⊥

)
Fcos 2φh

UU (xB, zh, P2
h⊥,Q

2)

− i
(
t̂µĥν − t̂νĥµ

)
Fsin φh

UU (xB, zh, P2
h⊥,Q

2)
]
,

(3.8)

where we introduced the normalized vector ĥ = Ph⊥/|Ph⊥|.
The choice of using the angles as indices for the structure functions is done with hindsight. In

fact, the contraction with the leptonic tensor leads to structures such as(
t̂µl̂ν + t̂ν l̂µ

)(
t̂µĥν + t̂νĥµ

)
= −gµν⊥ l̂µĥν ≡ cos φh (3.9)(

t̂µε⊥νρl̂ρ + t̂νε⊥µρ l̂ρ
)(

t̂µĥν + t̂νĥµ
)
= −ε

µν
⊥ l̂µĥν ≡ sin φh (3.10)

The above angles correspond to the definition given in the “Trento conventions” [19] and can
be computed in the target rest frame, or in the Breit frame, or in any frame reached from the target
rest frame by a boost along q̂:

cos φh =
(q̂ × l)
|q̂ × l|

·
(q̂ × Ph)
|q̂ × Ph|

,

sin φh =
(l × Ph) · q̂
|q̂ × l| |q̂ × Ph|

.

(3.11)

The resulting cross section after contraction with the leptonic tensor is:

dσ
dxB dy dz dφh dP2

h⊥

=
2πα2

xBy Q2

y2

2 (1 − ε)
(3.12)

×

{
FUU,T + εFUU,L +

√
2 ε(1 + ε) cos φh Fcos φh

UU

+ ε cos(2φh) Fcos 2φh
UU + λe

√
2 ε(1 − ε) sin φh Fsin φh

LU (3.13)

The last term requires a polarized letpon beam. If the beam is unpolarized, it drops (but this may
not be exactly the case in experiments). The third and fourth terms vanish if we integrate over the
angle φh of the outgoing hadron (but, also in this case, the experimental acceptance may not be
perfect).

Integration of Eq. (3.71) over the transverse momentum Ph⊥ of the outgoing hadron gives the
semi-inclusive deep inelastic scattering cross section

dσ
dxB dy dz

=
4πα2

xByQ2

y2

2 (1 − ε)

(
FUU,T + εFUU,L

)
(3.14)
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where now the structure functions on the r.h.s. are integrated versions of the previous ones, i.e.

FUU,T/L(xB, zh,Q2) =
∫

d2 Ph⊥ FUU,T/L(xB, zh, P2
h⊥,Q

2). (3.15)

Finally, the connection the result for totally inclusive DIS can be obtained by
dσ(`p→ `X)

dxB dy
=

∑
h

∫
dzh zh

dσ(`p→ `hX)
dz dxB dy

(3.16)

where we have summed over all hadrons in the final state. This leads to the result already given in
Eq. (2.23) (integrated over φS ), once we identify∑

h

∫
dzh zh FUU,T (xB, zh,Q2) = FT (xB,Q2), (3.17)

∑
h

∫
dzh zh FUU,L(xB, zh,Q2) = FL(xB,Q2), (3.18)

Time-reversal invariance requires (see, e.g., Ref. [61])∑
h

∫
dzh zh Fsin φS

UT (xB, zh,Q2) = 0. (3.19)

The choice of a convenient frame to deal with semi-inclusive DIS is less straightforward than
for inclusive DIS, due to the presence of Ph. We have two choices:

• FRAME 1: Keep the photon and proton to be collinear, give a transverse component to Ph.
This means to keep the parametrization of the vectors as given in Eq. (2.29) and simply
adding

Pµ
h =

[
zhQ
√

2
,

M2
h + |Ph⊥|

2

zhQ
√

2
, Ph⊥

]
(3.20)

• FRAME 2: Keep the proton and outgoing hadron to be collinear, give a transverse compo-
nent to q. In terms of light-cone vectors this means choosing

Pµ = P+nµ+ +
M2

2P+
nµ− , (3.21)

Pµ
h = P−h nµ− +

M2
h

2P−h
nµ+ . (3.22)

In this frame, the photon momentum has a transverse component. If we further fix

xP+ = P−h /z = Q/
√

2 (3.23)

we can explicitly write the vectors involved as follows

Pµ =

[
xBM2

Q
√

2
,

Q

xB
√

2
, 0

]
(3.24a)

Pµ
h =

[
zhQ
√

2
,

M2
h

zhQ
√

2
, 0

]
(3.24b)

qµ =

 Q
√

2
, −

(
Q2 − |qT |

2
)

Q
√

2
, qT

 ≈ [
Q
√

2
, −

Q
√

2
, qT

]
(3.24c)
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p p

Φ

∆

Figure 3.2: The bull diagram, describing the hadronic tensor at tree level.

The first choice seems to be the most simple one, but in reality from the theoretical point of
view it is better to stick to the second option, in order to preserve a symmetry between P and Ph.

In any case, it turns out that if we neglect subleading twist corrections, all vectors in the two
frames are approximately the same, the only difference is the presence of P⊥ in FRAME 1 and the
presence of qT in FRAME 2, and the two are simply connected by

qT = −zPh⊥. (3.25)

Therefore, in this chapter we are not going to care very much about distinguishing the two frames,
and every time we have qT we can replace it with −zPh⊥ or vice-versa, at our convenience.

3.2 Unpolarized SIDIS in the parton model

In the spirit of the parton model, the virtual photon strikes a quark inside the nucleon. In the case
of current fragmentation, the tagged final state hadron comes from the fragmentation of the struck
quark. The scattering process can then be factorized in two soft hadronic parts connected by a hard
scattering part, as shown in Fig. 3.2.

Considering only the Born-level contribution to the hard scattering, the hadronic tensor can be
written as

2MWµν(q, P, S , Ph) =
∑

q

e2
q

∫
d4p d4k δ(4) (p + q − k) Tr (Φ(p, P, S ) γµ ∆(k, Ph) γν) , (3.26)
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where Φ and ∆ are so-called quark-quark correlation functions and are defined as

Φ ji(p, P, S ) =
1

(2π)4

∫
d4ξ eip·ξ〈P, S ψ̄̄i(0) ψ j(ξ) P, S

〉
=

∑
X

∫
d3PX

(2π)3 2P0
X

〈
P, S ψ̄̄i(0) X

〉〈
X ψ j(0) P, S

〉
δ(4)

(
P − p − PX

)
,

(3.27)

∆kl(k, Ph) =
1

(2π)4

∫
d4ξ eik·ξ 〈0 ψk(ξ) Ph

〉〈
Ph ψ̄̄l(0) 0

〉
=

∑
Y

∫
d3PY

(2π)3 2P0
Y

〈
0 ψk(0) Ph,Y

〉〈
Ph,Y ψ̄̄l(0) 0

〉
δ(4)

(
k − Ph − PY

)
.

(3.28)

We need to introduce a parametrization for the vectors

pµ =
[

p2 + |pT |
2

2xP+
, xP+, pT

]
, (3.29a)

kµ =

P−h
z
,

z
(
k2 + |kT |

2
)

2P−h
, kT

 . (3.29b)

Neglecting terms which are 1/Q suppressed, we can write

δ(4) (p + q − k) ≈ δ(p+ + q+) δ(q− − k−) δ(2)
(
pT + qT − kT

)
≈

1
P+ P−h

δ(x − xB) δ(1/z − 1/zh) δ(2)
(
pT + qT − kT

) (3.30)

and replacing

d4k = d2 kT dk+ P−h
d z
z2 (3.31)

we obtain the compact expression

2MWµν(q, P, S , Ph) = 2zh I
[
Tr(Φ(xB, pT , S ) γµ ∆(zh, kT ) γν)

]
, (3.32)

where, as we shall do very often, we used the shorthand notation

I
[
· · ·

]
≡

∫
d2pT d2 kT δ

(2)
(
pT + qT − kT

) [
· · ·

]
=

∫
d2pT d2 kT δ

(2)
(
pT −

Ph⊥

z
− kT

) [
· · ·

]
,

(3.33)

and where we introduced the “unintegrated” or “transverse-momentum dependent” correlation
functions

Φ(x, pT , S ) ≡
∫

dp−Φ(p, P, S )
∣∣∣∣
p+=xP+

, (3.34a)

∆(z, kT ) ≡
1
2z

∫
dk+∆(k, Ph)

∣∣∣∣
k−=P−h /z

. (3.34b)
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While the distribution correlation function Φ describes the confinement of partons inside hadrons,
the fragmentation correlation function ∆ describes the way a virtual parton “decays” into a hadron
plus something else, i.e. q∗ → hY . This process is referred to as hadronization. It is a clear
manifestation of color confinement: the asymptotic physical states detected in experiment must be
color neutral, so that quarks have to evolve into hadrons.1

Integrating the cross section over Ph⊥ we get

d4σ

dxB dy dzh dφS
=

α2

4zhsxB Q2 Lµν(l, l′, λe) 2MWµν(q, P, S ), (3.35)

where

2MWµν(q, P, S ) = 2zh Tr(Φ(xB, S ) γµ ∆(zh) γν), (3.36a)

Φ(x, S ) ≡
∫

dp− d2pT Φ(p, P, S )
∣∣∣∣
p+=xP+

, (3.36b)

∆(z) ≡
z
2

∫
dk+ d2kT ∆(k, Ph)

∣∣∣∣
k−=P−h /z

. (3.36c)

3.3 The unpolarized correlation functions
The big difference from the inclusive DIS calculation is that we now need the transverse-momentum
dependent correlation function defined in Eq. (3.34a). Following analogous steps as done for the
inclusive DIS case and keeping only the leading-twist terms, we obtain

Φ(x, pT )Tw−2 =

{
f1(x, p2

T ) + ih⊥1 (x, p2
T )

/pT

M

}
/n+/2. (3.37)

Here we introduced the parton distribution functions

f1(x, p2
T ) = 2P+

∫
dp− (A2 + xA3) , h⊥1 (x, p2

T ) = 2P+
∫

dp− (−A4) . (3.38)

The function f1(x, p2
T ) is the unpolarized transverse-momentum-dependent PDF (unpolarized TMD).

The function h⊥1 (x, p2
T ) is the so-called Boer-Mulders TMD [32].

We can do the same exercise also for the fragmentation correlation function defined in Eq. (3.34b),
with very few changes. I don’t go through all the analysis here, and just quote the final result

∆(z, kT )Tw−2 =

(
D1(z, k2

T ) + i H⊥1 (z, k2
T )

/kT

Mh

)
/n−/2. (3.39)

The function D1(z, k2
T ) is the unpolarized transverse-momentum-dependent fragmentation function

(unpolarized TMD FF). The function H⊥1 (z, k2
T ) is the so-called Collins function [51].

The Boer-Mulders and Collins functions are particularly relevant because they give rise to
nontrivial transverse-momentum dependences of cross sections already at the level of unpolarized

1Note that on the way to the final state hadrons, the color carried by the initial quark can be neutralized without
breaking factorization, for instance via soft gluon contributions.



Pr
el

im
in

ar
y

36 3. Semi-inclusive DIS

processes (e.g., SIDIS experiments such as ZEUS and H1 at DESY, e+e− annihilation experiments,
and in principle even at the LHC).

Another important property of the Boer-Mulders and Collins functions is that they are T-odd
(or naive time-reversal odd), according to the definition

Φ∗T-even(p, P, S ) = iγ1γ3ΦT-even( p̃, P̃, S̃ ) iγ1γ3, (3.40a)

Φ∗T-odd(p, P, S ) = −iγ1γ3ΦT-odd( p̃, P̃, S̃ ) iγ1γ3. (3.40b)

The above definition does not fully correspond to time-reversal invariance and T-odd functions do
not violate time-reversal invariance. They give rise to observables to observables that change sign
when inverting momenta and angular momenta (e.g., single-spin asymmetries).

As mentioned already for inclusive DIS, the correlation function is a 4× 4 Dirac matrix. How-
ever, its leading-twist part spans only a 2 × 2 Dirac subspace. Using the chiral or Weyl representa-
tion, the correlation function reads

(
P+Φ(x, pT )γ+

)
ji
=


f1 0 0 ieiφp

|pT |

M
h⊥1

0 0 0 0
0 0 0 0

−ie−iφp
|pT |

M
h⊥1 0 0 f1


. (3.41)

As shown by this explicit form, the four-dimensional Dirac space can be reduced to a two-dimen-
sional space, retaining only the nonzero part of the correlation function. The relevant part of the
Dirac space is the one corresponding to good quark fields. The correlation matrix in the good
quark chirality space is then simply

(
P+Φγ

+
)
χ′1χ1

=

 f1 ieiφp
|pT |

M
h⊥1

−ie−iφp
|pT |

M
h⊥1 f1

 . (3.42)

From the matrix representation in the chirality space it should be clear why the function h⊥1 is
defined to be chiral odd.

The distribution matrix is clearly Hermitean. When an exponential eil′φp appears in the matrix,
we have to take into account l′ units of angular momentum in the final state. The condition of
angular momentum conservation then requires χ′1 + l′ = χ1. The condition parity conservation is

F(x, pT )χ1χ
′
1
= (−1)l′ F(x, pT )

−χ1 −χ
′
1

∣∣∣∣∣
l′→−l′

. (3.43)

The fact that the matrix has to be positive definite allows us to derive the positivity bound

|pT |

M
|h⊥1 (x, p2

T )| ≤ f1(x, p2
T ). (3.44)
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3.4 Some phenomenology: unpolarized cross sections

In this section, I briefly outline the steps that are necessary to interpret unpolarized cross-section
data in terms of TMDs.

The unpolarized cross sections for SIDIS integrated over the azimuthal angle, but not on the
absolute value of Ph⊥ read

dσ
dx dy dz dP2

h⊥

=
4π2α2

xQ2

y
2 (1 − ε)

(
FUU,T (x, z, P2

h⊥,Q
2) + εFUU,L(x, z, P2

h⊥,Q
2)
)
. (3.45)

To have a compact notation for the results, we introduce the notation

f ⊗ D = xB

∫
d2 pT d2 kT δ

(2)(pT − kT − Ph⊥/z
)

f a(xB, p2
T ) Da(z, k2

T ). (3.46)

We obtain

FUU,T =
∑

a

e2
a f a

1 ⊗ Da
1, FUU,L = O

(M2

Q2 ,
P2

h⊥

Q2

)
, (3.47)

Since the longitudinal structure function is suppressed as 1/Q2 in the low transverse momentum
region, we will neglect it.

To introduce some simplification, we resort to tsospin and charge-conjugation relations, which
imply for “favored” functions

Du→π+
1 = Dd̄→π+

1 = Dd→π−
1 = Dū→π−

1 ,≡ Df
1 (3.48)

Du→K+
1 = Dū→K−

1 ,≡ Dfd
1 (3.49)

Ds̄→K+
1 = Ds→K−

1 ≡ Df′
1 (3.50)

for the “unfavored” functions

Dū→π+
1 = Dd→π+

1 = Dd̄→π−
1 = Du→π−

1 ≡ Dd
1, (3.51)

Ds→π+
1 = Ds̄→π+

1 = Ds→π−
1 = Ds̄→π−

1 ≡ Ddf
1 , (3.52)

Dū→K+
1 = Dd̄→K+

1 = Dd→K+
1 = Dd̄→K−

1 = Dd→K−
1 = Du→K−

1 ≡ Ddd
1 , (3.53)

Ds→K+
1 = Ds̄→K−

1 ≡ Dd′
1 . (3.54)

There are in principle seven independent functions. If needed, a further assumption could be to set
Df′

1 = Df
1 and Dd′

1 = Dd
1, leaving five independent functions.

In general, the convolution cannot be disentangled. Only if the functions have a specific func-
tional form we can obtain a simple expression.

To study the flavor structure of TMDs, it is necessary to use different targets and detect different
final-state hadrons. The structure functions for the different combinations of target and outgoing



Pr
el

im
in

ar
y

38 3. Semi-inclusive DIS

hadron read then

9F p/π+

UU,T (x, z, P2
h⊥) =

(
4 f u

1 + f d̄
1

)
⊗ Df

1 +
(
4 f ū

1 + f d
1

)
⊗ Dd

1 +
(

f s
1 + f s̄

1

)
⊗ Ddf

1 , (3.55)

9F p/π−

UU,T (x, z, P2
h⊥) =

(
4 f ū

1 + f d
1

)
⊗ Df

1 +
(
4 f u

1 + f d̄
1

)
⊗ Dd

1 +
(

f s
1 + f s̄

1

)
⊗ Ddf

1 , (3.56)

9Fn/π+

UU,T (x, z, P2
h⊥) =

(
4 f d

1 + f ū
1

)
⊗ Df

1 +
(
4 f d̄

1 + f u
1

)
⊗ Dd

1 +
(

f s
1 + f s̄

1

)
⊗ Ddf

1 (3.57)

9Fn/π−

UU,T (x, z, P2
h⊥) =

(
4 f d̄

1 + f u
1

)
⊗ Df

1 +
(
4 f d

1 + f ū
1

)
⊗ Dd

1 +
(

f s
1 + f s̄

1

)
⊗ Ddf

1 , (3.58)

9F p/K+

UU,T (x, z, P2
h⊥) = 4 f u

1 ⊗ Dfd
1 +

(
4 f ū

1 + f d
1 + f d̄

1

)
⊗ Ddd

1 + f s̄
1 ⊗ Df′

1 + f s
1 ⊗ Dd′

1 , (3.59)

9F p/K−

UU,T (x, z, P2
h⊥) = 4 f ū

1 ⊗ Dfd
1 +

(
4 f u

1 + f d
1 + f d̄

1

)
⊗ Ddd

1 + f s
1 ⊗ Df′

1 + f s̄
1 ⊗ Dd′

1 , (3.60)

9Fn/K+

UU,T (x, z, P2
h⊥) = 4 f d

1 ⊗ Dfd
1 +

(
4 f d̄

1 + f u
1 + f ū

1

)
⊗ Ddd

1 + f s̄
1 ⊗ Df′

1 + f s
1 ⊗ Dd′

1 , (3.61)

9Fn/K−

UU,T (x, z, P2
h⊥) = 4 f d̄

1 ⊗ Dfd
1 +

(
4 f d

1 + f u
1 + f ū

1

)
⊗ Ddd

1 + f s
1 ⊗ Df′

1 + f s̄
1 ⊗ Dd′

1 (3.62)

Were there no difference in the transverse momentum distribution for different flavors and/or
for different fragmentation functions, all the above structure functions would display the same
Ph⊥ behavior. Therefore, a non-flat Ph⊥ dependence of any ratio of them would expose these
differences.

For illustration purposes, let us neglect the sea-quark contributions and focus only on the pions.
We obtain

9F p/π+

UU,T (x, z, P2
h⊥) = 4 f u

1 ⊗ Df
1 + f d

1 ⊗ Dd
1, (3.63)

9F p/π−

UU,T (x, z, P2
h⊥) = f d

1 ⊗ Df
1 + 4 f u

1 ⊗ Dd
1, (3.64)

9Fn/π+

UU,T (x, z, P2
h⊥) = 4 f d

1 ⊗ Df
1 + f u

1 ⊗ Dd
1, (3.65)

9Fn/π−

UU,T (x, z, P2
h⊥) = f u

1 ⊗ Df
1 + 4 f d

1 ⊗ Dd
1 (3.66)

Let us assume Gaussians distribution of transverse momentum, both for the distribution and
fragmentation function, i.e.,

f a
1 (x, p2

T ) =
f a
1 (x)
πρ2

a
e−p2

T /ρ
2
a , Da

1(z, k2
T ) =

Da
1(z)
πσ2

a
e−z2 k2

T /σ
2
a . (3.67)

The convolution turns out to be in this case

f a
1 ⊗ Da

1 = f a
1 (x)Da

1(z)
1

π(z2ρ2
a + σ

2
a)

e−P2
h⊥/(z

2ρ2
a+σ

2
a) (3.68)

The transverse-momentum dependence of the partonic functions is usually assumed to be a
flavor-independent Gaussian [59,110]. The tree-level approximation and the Gaussian assumption
are known to be inadequate at P2

h⊥ � M2, but they could effectively describe the physics at P2
h⊥ ≈

M2. Especially for low-energy experiments, this is where the bulk of the data is.
Let us see an example: a multiplicity measurement as a function of Ph⊥ from COMPASS.

Data are not published yet, but there are already some preliminary plots where we can at least
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qualitatively check the behavior of our computation [105,106]. The quantity that is plotted should
be

dσ
dxdydzdPh⊥

dσ
dxdydz

=
1

π(z2ρ2
a + σ

2
a)

e−P2
h⊥/(z

2ρ2
a+σ

2
a). (3.69)

Let us use the values... [not finished]

There is an extensive literature where the analysis is carried out to a higher level of com-
plication, but only for the specific case of unpolarized observables integrated over the azimuthal
angle of the measured transverse momentum. The analysis is usually performed in the space of
the Fourier-conjugate to Ph⊥ (b-space) in the Collins–Soper–Sterman (CSS) framework [57]. The
relation with the TMD formalism has been explicitly shown in Ref. [12]. The most recent study
along these lines is presented in Ref. [40]. The region of P2

h⊥ � M2, or b2 � 1/M2, can be
calculated perturbatively, but when P2

h⊥ ≈ M2 a nonperturbative component has to be introduced
and its parameters must be fitted to experimental data. This component is usually assumed to be
a flavor-independent Gaussian. The most advanced extraction of the nonperturbative contributions
is presented in Ref. [87]. A slightly different approach for the extraction has been followed in
Ref. [104].

At present, we can make the conservative statement that unpolarized quark TMDs seems to be
well described by flavor-independent Gaussians with

√
〈p2

T 〉 ≈ 0.4 − 0.8 GeV, depending on the
kinematics.

The knowledge of the details of the unpolarized TMDs has an impact also on high-energy
physics. In Fig. 3.3b, the cross section for Z boson production at the Tevatron is plotted [99].
The difference between the curves originates from different models and fits of the nonperturbative
component of the TMDs. Apart from the details, the plot shows that the knowledge of TMDs is
essential for precision studies at the Tevatron. Even the determination of a fundamental parameter
of the Standard Model, the mass of the W boson, is affected by the uncertainties of the knowledge
of unpolarized TMDs. In Ref. [1], the CDF collaboration discussed several ways to fit the W
mass. According to the analysis, TMDs uncertainties generate an error of 3.9 MeV on the W mass
determination (the total systematic error is about 34 MeV).

More information is needed to study in detail the flavor structure of TMDs. Interesting are
coming out from JLab, COMPASS and HERMES and it is an exciting time for this kind of stud-
ies [80, 96, 105, 106].

3.5 Polarized SIDIS

In this case, the hadronic tensor can be parametrized in terms of 18 structure functions [20].

We do not give here the explicit formula of the hadronic tensor but only give the resulting cross
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Figure 3.3: The cross sections of Z boson production at the Tevatron, computed in the CSS formalism. The
difference between the curves shows the impact of choosing different nonperturbative components for the
TMDs. See Ref. [99] for details.

section after contraction with the leptonic tensor:

dσ
dxB dy dφS dz dφh dP2

h⊥

=
α2

xBy Q2

y2

2 (1 − ε)
(3.70)

×

{
FUU,T + εFUU,L +

√
2 ε(1 + ε) cos φh Fcos φh

UU

+ ε cos(2φh) Fcos 2φh
UU + λe

√
2 ε(1 − ε) sin φh Fsin φh

LU

+ S ‖

[ √
2 ε(1 + ε) sin φh Fsin φh

UL + ε sin(2φh) Fsin 2φh
UL

]
+ S ‖ λe

[
√

1 − ε2 FLL +
√

2 ε(1 − ε) cos φh Fcos φh
LL

]
+ |S⊥|

[
sin(φh − φS )

(
Fsin(φh−φS )

UT,T + ε Fsin(φh−φS )
UT,L

)
+ ε sin(φh + φS ) Fsin(φh+φS )

UT + ε sin(3φh − φS ) Fsin(3φh−φS )
UT

+
√

2 ε(1 + ε) sin φS Fsin φS
UT +

√
2 ε(1 + ε) sin(2φh − φS ) Fsin(2φh−φS )

UT

]
+ |S⊥|λe

[
√

1 − ε2 cos(φh − φS ) Fcos(φh−φS )
LT +

√
2 ε(1 − ε) cos φS Fcos φS

LT

+
√

2 ε(1 − ε) cos(2φh − φS ) Fcos(2φh−φS )
LT

]}
. (3.71)

The first and second subscript of the above structure functions indicate the respective polarization
of beam and target, whereas the third subscript in FUU,T and FUU,L specifies the polarization of the
virtual photon. Using the definition (2.24), the depolarization factors can be written in terms of the
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y variable as

y2

2 (1 − ε)
=

(
1 − y + y2/2

)
(3.72)

y2

2 (1 − ε)
ε = (1 − y) (3.73)

y2

2 (1 − ε)

√
1 − ε2 = y (1 − y/2) (3.74)

y2

2 (1 − ε)

√
2 ε(1 + ε) = (2 − y)

√
1 − y (3.75)

y2

2 (1 − ε)

√
2 ε(1 − ε) = y

√
1 − y (3.76)

Integration of Eq. (3.71) over the transverse momentum Ph⊥ of the outgoing hadron gives the
semi-inclusive deep inelastic scattering cross section

dσ
dxB dy dφS dz

=
2α2

xByQ2

y2

2 (1 − ε)

{
FUU,T + εFUU,L + S ‖λe

√
1 − ε2 FLL

+ |S⊥|
√

2 ε(1 + ε) sin φS Fsin φS
UT + |S⊥|λe

√
2 ε(1 − ε) cos φS Fcos φS

LT

}
, (3.77)

where now the structure functions on the r.h.s. are integrated versions of the previous ones, i.e.

FUU,T (xB, zh,Q2) =
∫

d2 Ph⊥ FUU,T (xB, zh, P2
h⊥,Q

2) (3.78)

and similarly for the other functions.
Finally, the connection the result for totally inclusive DIS can be obtained by

dσ(`p→ `X)
dxB dy dφS

=
∑

h

∫
dzh zh

dσ(`p→ `hX)
dz dxB dy dφS

(3.79)

where we have summed over all hadrons in the final state. This leads to the result already given in
Eq. (2.23), once we identify∑

h

∫
dzh zh FUU,T (xB, zh,Q2) = FT (xB,Q2), (3.80)

∑
h

∫
dzh zh FUU,L(xB, zh,Q2) = FL(xB,Q2), (3.81)

∑
h

∫
dzh zh FLL(xB, zh,Q2) = 2xB

(
g1(xB,Q2) − γ2g2(xB,Q2)

)
, (3.82)

∑
h

∫
dzh zh Fcos φS

LT (xB, zh,Q2) = −2xBγ
(
g1(xB,Q2) + g2(xB,Q2)

)
. (3.83)

Time-reversal invariance requires (see, e.g., Ref. [61])∑
h

∫
dzh zh Fsin φS

UT (xB, zh,Q2) = 0. (3.84)
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3.6 Semi-inclusive DIS in the parton model

When including also target polarization, starting from the general decomposition presented in
Eq. (2.50), the leading order part of the transverse-momentum dependent correlation function be-
comes

Φ(x, pT ) =
1
2

{
f1 /n+ + f ⊥1T

ε
ρσ
T S Tρ pTσ

M
/n+ + g1sγ5 /n+

+ h1T

[
/S T , /n+

]
γ5

2
+ h⊥1s

[
/pT , /n+

]
γ5

2M
+ i h⊥1

[
/pT , /n+

]
2M

}
Here we introduced

ε
αβ
T = ε

αβρσ n+ρn−σ. (3.85)

The distribution functions on the r.h.s. depend on x and p2
T , except for the functions with

subscript s, where we use the shorthand notation [97]

g1s(x, pT ) = S L g1L(x, p2
T ) −

S T · pT

M
g1T (x, p2

T ) (3.86)

and so forth for the other functions. It is also useful to introduce the function

h1(x, p2
T ) ≡ h1T (x, p2

T ) + h⊥(1)
1T (x, p2

T ). (3.87)

The definition of the parton distribution functions in terms of the amplitudes Ai, introduced in
Eq. (2.50), can be found elsewhere [73, 88, 115].

The two functions f ⊥1T (Sivers function) and h⊥1 (Boer-Mulders function) are T-odd [32, 66].
The notation for the distribution functions follows closely that of Ref. [97], sometimes referred
to as “Amsterdam notation.” We remark that a number of other notations exist for some of the
distribution functions, see e.g. Refs. [24, 70, 107]. In particular, transverse-momentum-dependent
functions at leading twist have been widely discussed by Anselmino et al. [5,7,8]. The connection
between the notation in these papers and the one used here is discussed in App. C of Ref. [7]. The
following names are in common use for the TMDs:

• f1: unpolarized TMD;

• g1L: helicity TMD;

• h1: transversity TMD;

• f ⊥1T : Sivers TMD;

• h⊥1 : Boer-Mulders TMD;

• g⊥1T : worm-gear TMD, or transversal helicity TMD;

• h⊥1L: worm-gear TMD, or Kotzinian-Mulders TMD, or longitudinal transversity TMD;
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quark pol.

U L T

nu
cl

eo
n

po
l.

U f1 h⊥1

L g1 h⊥1L

T f ⊥1T g1T h1 h⊥1T

Figure 3.4: Twist-2 transverse-momentum-dependent distribution functions. The U,L,T correspond to un-
polarized, longitudinally polarized and transversely polarized nucleons (rows) and quarks (columns). Func-
tions in boldface survive transverse momentum integration. Functions in gray cells are T-odd.

• h⊥1T : pretzelosity TMD or quadrupole TMD.

The table in Fig. 3.4 lists the TMDs with their connection to quark and target polarizations.

Useful relations are

Φ[γ+] = f1(x, p2
T ) −

ε
ρσ
T pTρS Tσ

M
f ⊥1T (x, p2

T ) , (3.88)

Φ[γ+γ5] = S L g1L(x, p2
T ) −

pT ·S T

M
g1T (x, p2

T ) , (3.89)

Φ[iσα+γ5] = S α
T h1(x, p2

T ) + S L
pαT
M

h⊥1L(x, p2
T )

− S Tρ
pαT pρT −

1
2 p2

T gαρT

M2 h⊥1T (x, p2
T ) −

ε
αρ
T pTρ

M
h⊥1 (x, p2

T ) . (3.90)

Transverse-momentum dependent parton distributions of leading twist can be interpreted as
number densities (see e.g. Refs. [6,9,24]). To connect with this interpretation, we take the example
of the distribution of unpolarized quarks in a polarized proton. , which is given by [19]

fq/p↑(x, pT ) = Φ[/n−]

= f q
1 (x, p2

T ) − f ⊥q
1T (x, p2

T )
εµνρσPµpνS ρ(n−)σ

M (P · n−)

= f q
1 (x, p2

T ) − f ⊥q
1T (x, p2

T )
(P̂ × pT ) · S

M
,

(3.91)

The second expression in (3.91) holds in any frame where n and the direction P̂ of the proton
momentum point in opposite directions. Therefore f ⊥q

1T > 0 corresponds to a preference of the
quark to move to the left if the proton is moving towards the observer and the proton spin is
pointing upwards.

Let us give the corresponding relation for the Boer-Mulders function. The distribution of trans-
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h⊥1T =

f⊥1T =

h⊥1 =

h⊥1L =

g1T =f1 =

g1 =

h1 =

parton with transverse or longitudinal spin

parton transverse momentum

nucleon with transverse or longitudinal spin

Figure 3.5: Probabilistic interpretation of twist-2 transverse-momentum-dependent distribution functions.
To avoid ambiguities, it is necessary to indicate the directions of quark’s transverse momemtum, target spin
and quark spin, and specify that the proton is moving out of the page, or alternatively the photon is moving
into the page.

versely polarized quarks in an unpolarized proton is (see Eq. (11) and (12) of [37])

fq↑/p(x, pT ) = Φ(S = 0)[/n−] + Φ(S = 0)[iσµνγ5 nµ−S ν
q]

=
1
2

(
f q
1 (x, p2

T ) − h⊥q
1 (x, p2

T )
εµνρσPµpνS qρ(n−)σ

M (P · n−)

)
=

1
2

 f q
1 (x, p2

T ) − h⊥q
1 (x, p2

T )
(P̂ × pT ) · Sq

M

 ,
(3.92)

where S q is the covariant spin vector of the quark. Therefore, h⊥q
1 > 0 corresponds to a preference

of the quark to move to the left if the proton is moving towards the observer and the quark spin is
pointing upwards.

The probabilistic interpretation of TMDs is summarized in Fig. 3.5.
For any transverse-momentum dependent distribution function, it will turn out to be convenient

to define the notation

f (1/2)(x, p2
T ) ≡

|pT |

2M
f (x, p2

T ), (3.93a)

f (n)(x, p2
T ) ≡

(
p2

T

2M2

)n

f (x, p2
T ), (3.93b)

for n integer.
As done previously, we can express the transverse momentum dependent correlation function

as a matrix in the parton chirality space ⊗ target helicity space. The steps for the chirality space
are analogous to the previous case, but the treatment of the target spin is obviously new.
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χ
1

χ′
1

Λ′
1 Λ

1
Figure 3.6: Illustration of the position of the indices of the correlation matrix.

Using the Weyl representation, the correlation function reads

(
P+Φ(x, S )γ+

)
ji
=


f1(x) + S L g1(x) 0 0 (S x − iS y) h1(x)

0 0 0 0
0 0 0 0

(S x + iS y) h1(x) 0 0 f1(x) − S L g1(x)

 . (3.94)

The four-dimensional Dirac space can be reduced to a two-dimensional space, retaining only the
nonzero part of the correlation function, i.e.(

P+Φ(x, S )γ+
)
χ′1χ1

= ρ(S )Λ1Λ
′
1

(
P+Φ(x)γ+

)Λ′1Λ1

χ′1χ1

. (3.95)

We will refer to the last term of this relation as the matrix representation of the correlation function
or, more simply, as the correlation matrix. Fig. 3.6 shows pictorially the position of the spin
indices.

Starting from Eq. (2.51) and using the relation

ΨU + S LΨL + S xΨx + S yΨy = ρ(S )Λ1Λ
′
1

(
ΨU + ΨL Ψx − iΨy

Ψx + iΨy ΨU − ΨL

)Λ′1Λ1

(3.96)

we can cast the correlation function in the matrix form(
P+Φ(x)γ+

)Λ′1Λ1
=

((
f1(x) + g1(x) γ5

)
P+ h1(x)

(
γx − iγy

)
γ5P+

h1(x)
(
γx + iγy

)
γ5P+

(
f1(x) − g1(x) γ5

)
P+

)
. (3.97)

Finally, by expressing the Dirac structures in Weyl representation and reducing the Dirac space as
done before, we obtain the matrix representation of the correlation function

(
P+Φ(x)γ+

)Λ′1Λ1

χ′1χ1

=



f1(x) + g1(x) 0 0 0

0 f1(x) − g1(x) 2h1(x) 0

0 2h1(x) f1(x) − g1(x) 0

0 0 0 f1(x) + g1(x)


, (3.98)

where the inner blocks are in the hadron helicity space (indices Λ′1Λ1), while the outer matrix is in
the quark chirality space (indices χ′1χ1).
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The form of the correlation matrix can also be established directly from angular momentum
conservation (requiring Λ′1+χ

′
1 = Λ1+χ1) and the conditions of Hermiticity and parity invariance.

In matrix language, the condition of parity invariance consists in [72]

(
P+Φ(x)γ+

)Λ′1Λ1

χ′1χ1

=
(
P+Φ(x)γ+

)−Λ′1 −Λ1

−χ′1 −χ1

. (3.99)

The most general form of the correlation matrix complying with the previous conditions corre-
sponds to Eq. (3.98).

As mentioned at the end of Sec. ?? on page ??, with transposing the quark chirality indices of
the correlation matrix

To simplify the formulae, it is useful to identify the T-odd functions as imaginary parts of some
of the T-even functions, which become then complex scalar functions. The following redefinitions
are required:2

g1T + i f ⊥1T → g1T , h⊥1L + ih⊥1 → h⊥1L. (3.100)

The resulting correlation matrix is [13, 14]

F(x, pT )Λ
′
1Λ1

χ1χ
′
1

=



f1 + g1L
|pT |

M
e−iφp g1T

|pT |

M
eiφp h⊥∗1L 2 h1

|pT |

M
eiφp g∗1T f1 − g1L

|pT |
2

M2 e2iφp h⊥1T −
|pT |

M
eiφp h⊥1L

|pT |

M
e−iφp h⊥1L

|pT |
2

M2 e−2iφp h⊥1T f1 − g1L −
|pT |

M
e−iφp g∗1T

2 h1 −
|pT |

M
e−iφp h⊥∗1L −

|pT |

M
eiφp g1T f1 + g1L


, (3.101)

where for sake of brevity we did not explicitly indicate the x and p2
T dependence of the distribution

functions and where φp is the azimuthal angle of the transverse momentum vector.
The distribution matrix is clearly Hermitean. The condition of angular momentum conservation

becomes Λ′1 + χ
′
1 + l′ = Λ1 + χ1. The condition of parity invariance becomes

F(x, pT )Λ
′
1Λ1

χ1χ
′
1

= (−1)l′ F(x, pT )−Λ
′
1 −Λ1

−χ1 −χ
′
1

∣∣∣∣∣
l′→−l′

. (3.102)

Bounds to insure positivity of any matrix element can be obtained by looking at the one-
dimensional and two-dimensional subspaces and at the eigenvalues of the full matrix. The one-
dimensional subspaces give the trivial bounds

f1(x, p2
T ) ≥ 0 ,

∣∣∣g1L(x, p2
T )

∣∣∣ ≤ f1(x, p2
T ) . (3.103)

2From a rigorous point of view, it would be better to introduce new functions, e.g. g̃1T and h̃⊥1L, but this would
overload the notation.
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From the two-dimensional subspaces we get

|h1| ≤
1
2

( f1 + g1L) ≤ f1, (3.104a)∣∣∣h⊥(1)
1T

∣∣∣ ≤ 1
2

( f1 − g1L) ≤ f1, (3.104b)∣∣∣g(1)
1T

∣∣∣2 + ∣∣∣ f ⊥(1)
1T

∣∣∣2 ≤ p2
T

4M2
( f1 + g1L) ( f1 − g1L) ≤

(
f (1/2)
1

)2
, (3.104c)∣∣∣h⊥(1)

1L

∣∣∣2 + ∣∣∣h⊥(1)
1

∣∣∣2 ≤ p2
T

4M2
( f1 + g1L) ( f1 − g1L) ≤

(
f (1/2)
1

)2
, (3.104d)

where, once again, we did not explicitly indicate the x and p2
T dependence to avoid too heavy

a notation. Besides the Soffer bound of Eq. (3.104a), now extended to include the transverse
momentum dependence, new bounds for the distribution functions are found. These bounds can
be very useful for phenomenological applications.

The positivity bounds can be sharpened even further by imposing the positivity of the eigen-
values of the correlation matrix. The complete analysis has been accomplished in Ref. 13 (see also
Ref. 14).

The connection with the integrated distribution functions defined in Eq. (2.52) is

f1(x) =
∫

d2pT f1(x, p2
T ), (3.105a)

g1L(x) =
∫

d2pT g1L(x, p2
T ), (3.105b)

h1(x) =
∫

d2pT h1(x, p2
T ). (3.105c)

The above identification is however a dangerous step. At parton-model level, it is not a big problem
if we assume that TMDs fall-off sufficently fast (i.e., they are integrable and their total integral is
approximately equal to their integral in the region p2

T � Q2). We may have in mind that partons
have some “intrinsic” transverse momentum of order p2

T ∼ M2 or p2
T ∼ Λ

2
QCD. This is however not

the case when we take into consideration QCD corrections. In this case, partons acquire transverse
momentum also through gluon radiation. First of all, this has the consequence that TMDs in
QCD are not integrable, so we must give up the above relations in general. Secondly, it becomes
impossible–or a matter of conventions–to distinguish an intrinsic part of transverse momentum
from a perturbative part. TMDs contain both.

Another way to state the problem is the following: the steps we took to analyze SIDIS were
based on the assumption that P2

h⊥ � Q2. We never needed this approximation for inclusive DIS,
where we introduced collinear PDFs. Collinear PDFs are obtained from an integration over P2

h⊥ up
to a limit of the order of Q2. They contain therefore also contributions that are outside the reach of
the TMD formalism. Therefore, we should not expect in general that the integral of TMDs gives
back collinear PDFs: something must be missing.

Is there then no relation between TMDs and collinear PDFs? The full QCD formalism tells us
that there is a relation, but it’s between PDFs and the high-transverse-momentum tail of TMDs.
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3.7 Structure functions in the parton model
Inserting the parameterizations of the different correlators in the expression (3.32) of the hadronic
tensor and contracting it with the leptonic tensor, one can calculate the leptoproduction cross sec-
tion for semi-inclusive DIS and project out the different structure functions appearing in Eq. 3.71.
To have a compact notation for the results, we introduce the notation

C
[
w f D

]
= xB

∑
q

e2
q

∫
d2 pT d2 kT δ

(2)(pT − kT − Ph⊥/z
)

w(pT , kT ) f q(xB, p2
T ) Dq(z, k2

T ), (3.106)

with the unit vector ĥ = Ph⊥/|Ph⊥|, where w(pT , kT ) is an arbitrary function.
These are the expressions for the structure functions appearing in Eq. (3.71)

FUU,T = C
[
f1D1

]
, (3.107)

FUU,L = 0, (3.108)

Fcos φh
UU = 0 (3.109)

Fcos 2φh
UU = C

[
−

2
(
ĥ · kT

) (
ĥ · pT

)
− kT · pT

MMh
h⊥1 H⊥1

]
, (3.110)

Fsin φh
LU = 0, (3.111)

Fsin φh
UL = 0, (3.112)

Fsin 2φh
UL = C

[
−

2
(
ĥ · kT

) (
ĥ · pT

)
− kT · pT

MMh
h⊥1LH⊥1

]
, (3.113)

FLL = C
[
g1LD1

]
, (3.114)

Fcos φh
LL = 0, (3.115)

Fsin(φh−φS )
UT,T = C

[
−

P̂h⊥ · pT

M
f ⊥1T D1

]
, (3.116)

Fsin(φh−φS )
UT,L = 0, (3.117)

Fsin(φh+φS )
UT = C

[
−

P̂h⊥ · kT

Mh
h1H⊥1

]
, (3.118)

Fsin(3φh−φS )
UT

= C

[2
(
P̂h⊥ · pT

) (
pT · kT

)
+ p2

T
(
P̂h⊥ · kT

)
− 4 (P̂h⊥ · pT )2 (P̂h⊥ · kT )

2M2Mh
h⊥1T H⊥1

]
, (3.119)

Fsin φS
UT = 0, (3.120)

Fsin(2φh−φS )
UT = 0, (3.121)

Fcos(φh−φS )
LT = C

[ P̂h⊥ · pT

M
g1T D1

]
, (3.122)

Fcos φS
LT = 0, (3.123)
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Fcos(2φh−φS )
LT = 0, (3.124)

It has to be stressed that in much of the past literature a different definition of the azimuthal angles
has been used, whereas in the present work we adhere to the Trento conventions [19].

Ex. 1
Compute some of the structure functions above using Mathematica and Feyncalc. For convenince,
you can use the following definitions

eta= {{0, 1, 0, 0}, {1, 0, 0, 0}, {0, 0, -1, 0}, {0, 0, 0, -1}}

GAp = GS[Momentum[nm]];

GAm = GS[Momentum[np]];

GA5 = DiracGamma[5];

And you have to introduce the following scalar products (the first two instructions are just a
convenient way to write all scalar products of light-cone vectors)

Unit = {nm, np, ni, nj};

Table[ScalarProduct[Unit[[i]], Unit[[j]]] = eta[[i, j]], {i, 1,

4}, {j, 1, 4}];

ScalarProduct[pt, np] = 0;

ScalarProduct[pt, nm] = 0;

ScalarProduct[kt, np] = 0;

ScalarProduct[kt, nm] = 0;

ScalarProduct[St, nm] = 0;

ScalarProduct[St, np] = 0;

Now you can introduce the decompositions of the correlation functions. In this first example,
we take into consideration only three of the eight terms in Eq. (3.85)

Phi = (f1 - g1T Pair[Momentum[pt], Momentum[St]]/M GA5 -

f1Tperp Pair[Momentum[pt], Momentum[epsT[St]]]/M).(GAm/2)

Delta = ( D1 + I H1perp 1/Mh GS[Momentum[kt]]).(GAp/2)

Build a first version of the hadronic tensor, according to Eq. (3.32). Note that for convenience
we can avoid introducing explicitly the convolution in Eq. (3.33). We need to remember to include
it in the final result.

MW0 = 1/2 2 z (Tr[Phi.GA[\[Mu]].Delta .GA[\[Nu]]]) //

Collect[#, {f1 D1, f1Tperp D1, D1 g1T}, Simplify] &
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Apply the following crucial replacements and cast the tensor in a convenient form

HadTensSimpl = {Pair[Momentum[pt], Momentum[St]] ->

SSt Cos[-\[Phi] + \[Phi]St] Pair[Momentum[pt], Momentum[h]],

Pair[Momentum[pt], Momentum[epsT[St]]] ->

SSt Sin[-\[Phi] + \[Phi]St] Pair[Momentum[pt], Momentum[h]]}

MW = MW0 /. HadTensSimpl // Simplify

Finally, contract with the leptonic tensor (obtained in Ex. 1)

crosssection1 = (\[Alpha]ˆ2 y)/(2 z Qˆ4)

Contract[Lept 2 MW]// Expand //

Collect[#, {f1 D1, f1Tperp D1, h1 H1perp, D1 g1T}, Simplify] &

By comparing the result with Eq. (3.71) and after fixing all small mistakes in the above, you
should be able to identify the structure functions corresponding to Eqs. (3.107), (3.116), and
(3.122).

3.8 Beyond the parton model

A first important difference between TMDs and PDFs when we also start taking gluons into account
is in the shape of the gauge link. The proper gauge invariant definition of the quark-quark correlator
is

Φi j(x, pT ) =
∫

dξ− d2ξT

(2π)3 eip·ξ 〈P|ψ̄ j(0)Ln−
(0,+∞)L

n−
(+∞,ξ) ψi(ξ)|P〉

∣∣∣∣∣
ξ+=0

(3.125)

where the gauge links (Wilson lines) are defined as

L
n−
(0,+∞) = L

n−(0−,∞−; 0T ) LT (0T ,∞T ;∞−), (3.126)

L
n−
(+∞,ξ) = L

T (∞T , ξT ;∞−) Ln−(∞−, ξ−, ξT ). (3.127)

Here Ln−(a−, b−; cT ) indicates a Wilson line running along the minus direction from [a−, 0, cT ] to
[b−, 0, cT ], while LT (aT , bT ; c−) indicates a Wilson line running in the transverse direction from
[c−, 0, aT ] to [c−, 0, bT ], i.e.

Ln−(a−, b−; cT ) = P exp
[
−ig

∫ b−

a−
dη−A+(η−, 0, cT )

]
, (3.128)

LT (aT , bT ; c−) = P exp
[
−ig

∫ bT

aT

dηT ·AT (c−, 0, ηT )
]
. (3.129)
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In particular

Ln−(∞−, ξ−, ξT ) = P exp
[
−ig

∫ ξ−

∞−
dη−A+(η−, 0, ξT )

]
≈ 1 − ig

∫ ξ−

∞−
dη−A+(η−, 0, ξT ) (3.130)

LT (∞T , ξT ;∞−) = P exp
[
−ig

∫ ξT

∞T

dηT ·AT (∞−, 0, ηT )
]

≈ 1 − ig
∫ ξT

∞T

dηT ·AT (∞−, 0, ηT ) (3.131)

The correlator in Eq. (3.125) is the one appearing in semi-inclusive DIS. Its path is pictorially
shown in Fig. 3.7.

A remarkable property of TMDs is that the detailed shape of the Wilson line is process-
dependent. This immediately leads to the conclusion that TMDs are not universal. However, for
transverse-momentum-dependent fragmentation functions, the shape of the Wilson line appears to
have no influence on physical observables [54, 64, 92, 117]. In SIDIS and Drell–Yan, the differ-
ence between the Wilson line consists in a simple direction reversal and leads to calculable effects,
namely a simple sign reversal of all T-odd TMDs [52].

In more complex processes, such as proton-proton collisions into hadrons, it was initially pro-
posed to introduce more intricate gauge links [15, 38, 39], but it seems now that it becomes even
impossible to disentangle them [108].

Gauge link for TMDs

ξ−

ξT

Φij(x, pT ) =
∫

dξ−d2ξT

8π3
eip·ξ〈P |ψ̄j(0)U[0,ξ]ψi(ξ)|P 〉

∣
∣
∣
∣
ξ+=0

ξ−

ξT

ξ−

ξT

!"#"!

#$%&&'()*

!!+,-+.)/$-*0

U[+]

U[−]

U[!]U[+]

1+0%2%$)&+-,.%$0

"#$%#&'()*+,-./'(012+$34'(05"(678(9:;<(

Wednesday, May 27, 2009

Figure 3.7: Path of the gauge link for semi-inclusive DIS.

Similarly to standard collinear PDFs, it is essential to define TMDs in a formally clear way,
through the proof of factorization theorems. TMDs appear when factorizing semi-inclusive pro-
cesses. For instance, while totally inclusive DIS can be described introducing collinear PDFs,
TMDs appear in semi-inclusive DIS if the transverse momentum of one outgoing hadron, Ph⊥, is
measured.

Dealing with semi-inclusive processes pushes the difficulty of proving factorization theorems
to a higher level of complications. TMD factorization is in fact a challenging arena where many
of the simplifications used in collinear factorization cannot be applied. Nevertheless, factorization
for semi-inclusive DIS has been worked out explicitly at leading twist (twist 2) and one-loop
order [12, 49, 56, 77]. For instance, the structure function FUU,T in the region P2

h⊥ � Q2 can be



Pr
el

im
in

ar
y

52 3. Semi-inclusive DIS

0 1 2 3 4 5 6

b
T,max

 = .5 GeV
-1

0.01

0.1

1

F
up

/P
(x

=
.0

9,
k T

) 
(G

eV
-2

)

Cols 1:2

Up Quark TMD PDF, x = .09

0 1 2 3 4 5 6
k

T
 (GeV)

0.01

0.1

1
b

T,max
 = 1.5 GeV

-1

Q = √2.4 GeV 
Q = 5.0 GeV
Q = 91.19 GeV

Figure 3.8: The up quark TMD for Q =
√

2.4, 5.0 and 91.19 GeV and x = 0.09 from Ref. [12]. The upper
and lower plot refer to two different choices for the parameter bmax needed in the full TMD formula.

expressed as

FUU,T =
∣∣∣H(

xζ1/2, z−1ζ1/2
h , µF

)∣∣∣2 ∑
a

x e2
a

∫
d2 pT d2 kT

× δ(2)(pT − kT − Ph⊥/z
)

f a
1 (x, p2

T ; ζ, µF) Da
1(z, k2

T ; ζh, µF). (3.132)

The formula contains the (calculable) hard scattering factor H and the transverse-momentum-
dependent PDFs and fragmentation functions. Following Refs. [12,49], there is no “soft factor” in
the above formula. The soft factor can be introduced to absorb infrared soft divergences. In this
alternative definition, these divergences are absorbed already in the TMDs.

According to TMD factorization, TMDs depend also on a cutoff ζ. This cutoff is used to regu-
late light-cone or rapidity divergences. As we mentioned in the DIS discussion, these divergences
cancel in inclusive DIS thanks to the summation of virtual and real diagrams and the integration
over transverse momentum, similarly to soft divergences. In semi-inclusive DIS, they do not can-
cel. Various ways to deal with these divergences have been proposed [46, 53, 56, 77].

TMD evolution is different from that of standard PDFs and takes into account how TMD shape
is influenced by the radiation of infinitely many gluons (transverse-momentum resummation) [57].
What needs to be obtained from data is the nonperturbative part of the functions (i.e., what cannot
be computed with perturbative QCD). Fig. 3.8 (from [12]) shows the effect of TMD evolution on
the distribution of up quarks (the nonperturbative part is taken from [87] and [110]). The effect of
gluon radiation is a broadening of the TMD.

In general and in simplified terms, the study of TMD factorization requires a deeper under-
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standing of what happens when a quark is hit inside a nucleon, with a particular attention to the
infinitely many gluons that surround the quark, beyond the simple case when its transverse mo-
mentum is integrated over.

3.9 Beyond the parton model: high transverse momentum

Three scales are involved in semi-inclusive DIS: the scale of nonperturbative QCD dynamics,
which we represent by the nucleon mass M, the transverse momentum Ph⊥, and the photon virtu-
ality Q, which we require to be large compared with M. For the considerations of this section, it is
convenient to consider the transverse momentum q2

T ≈ P2
h⊥/z

2.
At high qT (qT � M) the structure functions can be described using collinear factorization, i.e.,

in terms of collinear distribution and fragmentation functions together with perturbative radiation.
At low-qT (qT � Q) the structure functions can be described using TMD factorization [56,77], i.e.,
in terms transverse-momentum-dependent (TMD) parton distribution and fragmentation functions.
The low- and high-qT domains overlap for M � qT � Q (intermediate transverse momentum),
where both descriptions can hence be applied. This important property is what allows us to estab-
lish a connection between collinear PDFs and the tail of TMDs.

Ideally, we would like to have an expression for the polarized SIDIS cross section that describes
in a smooth way the physics from low to high transverse momentum. This issue becomes crucial at
collider experiments, where the possibility to reach high values of Q leaves room to meaningfully
distinguish between high, intermediate, and low transverse momentum.

In order to address the problem two steps are needed: (i) identify the structure functions for
which a matching is possible, (ii) work out a formula that describes the structure function at any
transverse momentum. In the following I will briefly discuss some crucial results.

To study the power behavior of the structure functions, it is important to realize that the power
expansions are done in two different ways in the two descriptions. At low qT , first we expand in
(qT/Q)n−2 and neglect terms with n bigger than a certain value (so far, analyses have been carried
out only up to n = 3, i.e., twist-3). To study the behavior at intermediate qT we further expand in
(M/qT )k. Vice versa, at high qT we first expand in (M/qT )n (also in this case, analyses are available
up to n = 3, i.e., twist-3). To study the intermediate-qT region, we further expand in (qT/Q)k−2.
We can encounter two different situations:

• Type-I observables, where the leading terms at high and low transverse momentum have the
same behavior. For instance,

F(qT ,Q) = A
[qT

Q

]0 [ M
qT

]2

+ B
[qT

Q

]2 [ M
qT

]2

+ . . . , (3.133)

where the term A is leading in both the low- and high-qT calculations. In this case, the
calculations at high and low transverse momentum must yield exactly the same result at
intermediate transverse momentum [57, 79]. If a mismatch occurs, it means that one of the
calculations is incorrect or incomplete.



Pr
el

im
in

ar
y

54 3. Semi-inclusive DIS

• Type-II observables, where the leading terms at high and low transverse momentum have
different behavior. For instance,

F(qT ,Q) = A′
[qT

Q

]0 [ M
qT

]4

+ B′
[qT

Q

]2 [ M
qT

]2

+ . . . . (3.134)

where the first term is leading and the second term subleading in the low-qT calculation,
whereas the reverse holds in the high-qT calculation. In this case, if the calculations at high
and low transverse momentum are performed at their respective leading order, they describe
two different mechanisms and will not lead to the same result at intermediate transverse
momentum. In order to “match”, the calculations should be carried out in both regimes up
to the sub-subleading order. We could call this situation an “expected mismatch”, since it is
simply due to the difference between the two expansions.

In Tab. 3.1 we list the power behavior of the structure functions at intermediate transverse
momentum, as obtained from the limits of the low-qT and high-qT calculation. For details of the
calculation, we refer to [16].

In the last column of the table we identify type-II structure functions, fow which the low-qT

and high-qT calculations at leading order pick up two different components of the full structure
function. They therefore describe two different mechanisms and do not match.

For type-II observables, if one aims at studying the leading-twist contribution from transverse
momentum distributions, some considerations have to be kept in mind:

• the leading contribution from the high-qT calculation (often referred to as a pQCD or radia-
tive correction) is a competing effect that has to be taken into account [25, 26, 100];

• qT -weighted asymmetries enhance the high-qT mechanism and thus are not appropriate to
extract TMDs;

• it is at present impossible to construct an expression that extends the high-qT calculation to
qT ≈ M, since this requires a smooth merging into unknown twist-4 contributions, which
most probably cannot be factorized (see also Ref. [29]);

• it may be useful to build observables that are least sensitive to the effect of radiative correc-
tions.

We stress that the above considerations apply not only to semi-inclusive DIS, but also to Drell-Yan
and e+e− annihilation [34], which have been already used to extract the Boer–Mulders and Collins
functions [25, 90].

The structure functions with a “yes” or “no” in the last column of Tab. 3.1 are type-I observ-
ables, where on the basis of power counting we know that two calculations describe the same
physics and should therefore exactly match. In these cases, the high-qT calculation describes the
perturbative tail of the low-qT effect. The two mechanisms need not be distinguished. Using re-
summation it should be possible to construct expressions for these observables that are valid at any
qT .
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Six of these structure functions have been calculated explicitly. The following structure func-
tions all involve twist-2 TMDs and indeed present an exact matching: FUU,T , FLL [82], Fsin(φh−φS )

UT,T

(Sivers structure function) [78] (see also the additions in Ref. [83]) and Fsin(φh+φS )
UT (Collins structure

function) [118]. We expect also Fcos(φh−φS )
LT to match exactly, since it has been shown explicitly for

a similar structure function in the Drell–Yan case [119].
The structure functions Fcos φh

UU and Fcos φh
LL do not match [16]. In analogy to these results, we

expect that also all the others will not match, since they are twist-3 in the low-qT regime, and the
TMD factorization formalism is probably complete only at twist 2.

In summary, at the moment there is the hope to build descriptions of the structure functions
that go from low to high transverse momentum for the five structure functions with a “yes” in the
last column of Tab. 3.1.

3.10 Weighted asymmetries
In the structure functions we have expressions such as

C

[
−

P̂h⊥ · pT

M
f ⊥1T D1

]
(3.135)

where the two functions appear in a convolution. The general way to split the convolution is to use
transverse-momentum-weighted asymmetries. For instance

W =
∫

d2 Ph⊥
|Ph⊥|

M
C

[
−

P̂h⊥ · pT

M
f ⊥1T D1

]
(3.136)

in fact

W = −xB

∑
q

e2
q

∫
d2 Ph⊥ d2 pT d2 kT δ

(2)(pT − kT − Ph⊥/zh
) Ph⊥ · pT

M
f ⊥q
1T Dq

1,

= −xB z2
h

∑
q

e2
q

∫
d2 pT d2 kT

(pT − kT ) · pT

M2 f ⊥q
1T Dq

1,

= −xB

∑
q

e2
q

∫
d2 pT

|pT |
2

M2 f ⊥q
1T z2

h

∫
d2 kT Dq

1

= −xB

∑
q

e2
q 2 f ⊥(1)q

1T (xB) D1(zh).

(3.137)

Why weighted asymmetries are important? From a phenomenological side, they allow us to
separately study transverse moments of TMDs and fragmentation functions, as simple products
instead of convolutions. From the theoretical point of view, after the weighted integral is per-
formed we can deal with collinear objects again and some of the complications entailed in TMD
factorization may drop.

The above expression is again a parton-model level expression. If we want a QCD expression,
the minimal requirement is that the involved transverse-momentum integrals could be treated in a
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similar way as the functions f1 and D1. To this purpose, Tab. 3.1 can be useful. You can see that
the structure function containing the Sivers function, (3.116), in Tab. 3.1 is indicated as a type-
I observable with exact matching. Moreover, the structure function falls as 1/q3

T , which means
that if we weigh it with a power of qT it acquires the same power behavior as the “standard”
unpolarized structure function. This may indicate that we can analyze weighted asymmetries with
similar techniques as collinear structure functions.
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struct. low-qT high-qT exact

function power power match

FUU,T 1/q2
T 1/q2

T yes

FUU,L 1/Q2

Fcos φh
UU 1/(QqT ) 1/(QqT ) no

Fcos 2φh
UU 1/q4

T 1/Q2 typeII

Fsin φh
LU 1/(QqT ) 1/(QqT ) (no)

Fsin φh
UL 1/(QqT ) (no)

Fsin 2φh
UL 1/q4

T (typeII)

FLL 1/q2
T 1/q2

T yes

Fcos φh
LL 1/(QqT ) 1/(QqT ) no

Fsin(φh−φS )
UT,T 1/q3

T 1/q3
T yes

Fsin(φh−φS )
UT,L 1/(Q2 qT )

Fsin(φh+φS )
UT 1/q3

T 1/q3
T yes

Fsin(3φh−φS )
UT 1/q3

T 1/(Q2 qT ) typeII

Fsin φS
UT 1/(Qq2

T ) 1/(Qq2
T ) (no)

Fsin(2φh−φS )
UT 1/(Qq2

T ) 1/(Qq2
T ) (no)

Fcos(φh−φS )
LT 1/q3

T (yes)

Fcos φS
LT 1/(Qq2

T ) (no)

Fcos(2φh−φS )
LT 1/(Qq2

T ) (no)

Table 3.1: Behavior of SIDIS structure functions in the region M � qT � Q, as deduced from the low-qT

calculation based on TMD factorization and the high-qT calculation based on collinear factorization. Empty
fields indicate that no calculation is available. The last column indicate whether the expressions match
exactly, do not match exactly, or should not be expected to match. In parentheses: expected answers based
on analogy, rather than actual calculation.
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4
Drell-Yan

4.1 Unpolarized Drell–Yan processes
The most complete analysis of Drell–Yan with the formalism of TMDs and with polarization has
been carried out in Ref. [11], but we should also mention Refs. [33, 116].

To be now specific we consider the dilepton production

Ha(Pa, S a) + Hb(Pb, S b)→ l−(l, λ) + l+(l′, λ′) + X , (4.1)

with (Pa, S a) and (Pb, S b) denoting the 4-momenta and the spin vectors of the incoming hadrons.
One has P2

a = M2
a , Pa · S a = 0, S 2

a = −1, and corresponding relations for the second hadron.
Throughout this work the mass of the leptons in the final state is neglected. We will sum over the
helicities λ, λ′ of the leptons.

In the one-photon exchange approximation the (frame-independent) cross section of the Drell-
Yan process is given by

l0l′0 dσ
d3 l d3 l′

=
α2

em

F q4 LµνWµν , (4.2)

where
F = 4

√
(Pa · Pb)2 − M2

a M2
b (4.3)

represents the flux of the incoming hadrons. If hadron masses are neglected one can write F =
2s = 2(Pa + Pb)2. In Eq. (4.2) the quantity Lµν denotes the spin-averaged leptonic tensor,

Lµν =
∑
λ,λ′

(
ū(l, λ)γµv(l′, λ′)

)(
ū(l, λ)γνv(l′, λ′)

)∗
= 4

(
lµl′ν + lνl′µ −

q2

2
gµν

)
, (4.4)
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while

Wµν(Pa, S a; Pb, S b; q) =
1

(2π)4

∫
d4x eiq·x 〈Pa, S a; Pb, S b | Jµem(0)Jνem(x) | Pa, S a; Pb, S b〉 (4.5)

is the hadronic tensor
The angular distribution of the Drell-Yan cross section is most conveniently be considered in a

dilepton rest frame like the Collins-Soper frame [55] or the Gottfried-Jackson frame [67]. In any
dilepton rest frame, one can rewrite Eq. (4.2) according to

dσ
d4q dΩ

=
α2

em

2 F q4 LµνWµν , (4.6)

where the solid angle Ω specifies the orientation of the leptons.
the unpolarized hadronic tensor:

Wµν
u =

4∑
i=1

tµνu,iVu,i , (4.7)

with the four structure functions Vu,i, and the tensor basis

tµνu,1 = gµν −
qµqν

q2 ,

tµνu,2 = P̃µ
aP̃ν

a ,

tµνu,3 = P̃µ
bP̃ν

b ,

tµνu,4 = P̃µ
aP̃ν

b + P̃ν
aP̃µ

b . (4.8)

In Eq. (4.8) we make use of the vectors

P̃µ
a = Pµ

a −
Pa · q qµ

q2 , P̃µ
b = Pµ

b −
Pb · q qµ

q2 , (4.9)

which vanish upon contraction with q.
Expressing the orientation of the leptons through the CS-angles θCS and φCS and contracting

the leptonic tensor in (4.4) with the hadronic tensor one finds the following general form of the
cross section in Eq. (4.6):

dσ
d4q dΩ

=
α2

em

F q2×[
(1 + cos2 θ) F1

UU + (1 − cos2 θ) F2
UU + sin 2θ cos φ Fcos φ

UU + sin2 θ cos 2φ Fcos 2φ
UU

]
(4.10)

The structure functions again depend on the three variables Pa · q, Pb · q, and q2.
In particular for the angular distribution of the unpolarized cross section different notations can

be found in the literature (see, e.g., [36] and references therein). Here we just quote the frequently
used formula

dN
dΩ
≡

dσ
d4q dΩ

/ dσ
d4q
=

3
4π

1
λ + 3

(
1 + λ cos2 θ + µ sin 2θ cos φ +

ν

2
sin2 θ cos 2φ

)
. (4.11)
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One readily finds

λ =
F1

UU − F2
UU

F1
UU + F2

UU

, µ =
Fcos φ

UU

F1
UU + F2

UU

, ν =
2 Fcos 2φ

UU

F1
UU + F2

UU

. (4.12)

The so-called Lam-Tung relation [50, 84, 85]

λ + 2ν = 1 , (4.13)

which in terms of the structure functions defined in (4.10) reads

F2
UU = 2 Fcos 2φ

UU , (4.14)

has attracted considerable attention in the past. This relation is exact if one computes the DY pro-
cess to O(αs) in the standard collinear perturbative QCD framework. Even at O(α2

s) the numerical
violation of (4.13) is small [95]. On the other hand data for π− N → µ− µ+ X taken at CERN [62,68]
and at Fermilab [58] are in disagreement with the Lam-Tung relation. In particular, an unexpect-
edly large cos 2φ modulation of the cross section was observed, and in the meantime different
explanations for this phenomenon have been put forward in the literature [23, 28, 31, 41–43, 69].
In Ref. [33] it was pointed out that intrinsic transverse motion of initial state partons might be
responsible for the observed violation of the Lam-Tung relation. In the following section we will
briefly return to this point in connection with the parton model calculation. It is also worthwhile to
mention that more recent Fermilab data on proton-deuteron Drell-Yan do agree with the Lam-Tung
relation [120].

4.2 Drell–Yan in the parton model

The hadronic tensor

Wµν =
1
Nc

∑
q

e2
q

∫
d4ka d4kb δ

(4)(q−ka−kb) Tr
[
γµΦq(ka, Pa, S a|na) γν Φ̄q(kb, Pb, S b|nb)

]
+{Φ↔ Φ̄} ,

(4.15)
The hadronic tensor then reduces to

Wµν =
1
Nc

∑
q

e2
q

∫
d2 kaT d2 kbT δ

(2)(qT − kaT − kbT ) Tr
[
γµΦq(xa, kaT , S a|na) γν Φ̄q(xb, kbT , S b|nb)

]
+ {Φ↔ Φ̄} , (4.16)

where we used the common DY variables

xa =
q2

2Pa · q
≈

k+a
P+a

, xb =
q2

2Pb · q
≈

k−b
P−b

. (4.17)
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Using the unit vector h ≡ qT/qT one eventually finds the following leading order structure
functions in the CS-frame:

F1
UU = C

[
f1 f̄1

]
, (4.18)

Fcos 2φ
UU = C

[
2
(
h · kaT

)(
h · kbT

)
− kaT · kbT

MaMb
h⊥1 h̄⊥1

]
(4.19)

where we made use of the following notation for the convolution of TMDs in the transverse mo-
mentum space:

C [w(kaT , kbT ) f1 f̄2] ≡
1
Nc

∑
q

e2
q

∫
d2 kaT d2 kbT δ

(2)(qT − kaT − kbT ) w(kaT , kbT ) ×[
f q
1 (xa, k2

aT ) f q̄
2 (xb, k2

bT ) + f q̄
1 (xa, k2

aT ) f q
2 (xb, k2

bT )
]
.(4.20)
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