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1. – Introduction

According to the present understanding of particle physics, the fundamental inter-
actions among elementary particles are described by the so-called Standard Model (SM)
of the electroweak and strong interactions. It is a non abelian gauge theory based on the
group SU(2)⊗U(1) for the description of the electromagnetic and weak forces in unified
form (the so-called standard electroweak theory) [1] and the group SU(3) colour for the
strong interactions (the so-called Quantum Chromodynamics or QCD) [2].



PRECISION PHYSICS AT LEP 3

In the SM the fundamental constituents of matter are quarks and leptons (mat-
ter fields), while the quanta mediating the interactions among the matter particles are
the photon, the W± and Z0 bosons and the gluons (gauge fields). Both quarks and
leptons interact via the electroweak force, while quarks in addition do participate also
in strong interactions. In the electroweak sector of the SM, the fundamental fermions
are grouped into three different generations. Each generation contains a charged lep-
ton (e, µ, τ), an associated neutrino (νe, νµ, ντ ), an “up” quark (u, c, t) and a “down”
quark (d, s, b). Fermions belonging to different generations have identical couplings but
are distinguishable by their masses. Although the SM does not predict the number of
sequential generations, the present precision measurements at LEP/SLC rule out the ex-
istence of a fourth generation with a neutrino of mass up to 45 GeV (see Sect. 4

.
1). All

the matter particles assumed by the SM have been experimentally discovered. In fact,
the long-awaited top quark has been recently observed by the CDF and D0 Collabora-
tions at the TEVATRON, and the value obtained for its mass (mt = 175.6 ± 5.5 GeV)
is in good agreement with the mass range indirectly obtained from LEP/SLC precision
measurements (see Sect. 4

.
2.1).

In order to realize the unification of electromagnetic and weak interactions, the
standard electroweak theory predicts the existence of four vector bosons as carriers of the
electroweak force: γ, W±, Z0. The electromagnetic interaction is described in terms of the
massless photon γ. Both charged and neutral current weak interactions are predicted by
the theory and described by the exchange of heavy W± and Z0 bosons. The intermediate
vector bosons W± and Z0, and all the fermions, acquire mass by the mechanism of
spontaneous symmetry breaking of the SU(2) ⊗ U(1) gauge symmetry, the so-called
Higgs mechanism [3]. Strictly speaking, no mass value is predicted by the theory; on the
other hand, by making use of low-energy experimental data, it is possible to determine
the vector boson masses and the masses of all the fermions with the exception of the
top quark, for which high-energy data are necessary. As a consequence of the Higgs
mechanism, the existence of a neutral scalar boson, the Higgs boson, is predicted by
the theory. However, also the mass of this particle is a free parameter that has to be
determined experimentally. At present, the Higgs boson has not been yet experimentally
observed, and its discovery would certainly represent one of the most important tests
of the SM. Present negative searches at LEP provide the mass limit mH > 77 GeV at
95% CL (see Sect. 4

.
2.2).

The first experimental confirmation of the electroweak theory was the observation
of the neutral currents in neutrino-electron scattering experiments [4]. Since then, im-
portant experimental results, such as the discovery of the W± and Z0 bosons by the
UA1/UA2 Collaborations in proton-antiproton collisions [5] and the evidence for the γ-
Z interference in e+e− → f f̄ processes at PEP/PETRA [6], provided further support
to the SM. With the advent of the electron-positron accelerators LEP (Large Electron
Positron collider at CERN) and SLC (Stanford Linear Collider at SLAC), the modern
era of precision tests of the SM was started. At LEP in its first phase (LEP1) and
SLC the Z0 bosons are copiously produced in a very clean experimental environment,
enabling the determination of the electroweak observables with impressive precision and
offering the possibility to test the predictive power of the SM at the level of its quantum
structure.

LEP1 and SLC colliders began their operation in the fall 1989. The energies of the
electron (e−) and positron (e+) beams were chosen to be approximately equal to 45 GeV,
in such a way that the available centre of mass energy was centered around the mass of
the neutral vector boson of the weak interaction, the Z0 boson (Ecm ≃ 91 GeV). LEP1
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was terminated in the fall 1995 in order to allow a second phase in the LEP experimental
program (LEP2) at energies above the Z0 peak, while SLC will continue in data taking
close to the Z0 resonance still for a few years. The high-energy reactions studied at
LEP1 by the four experiments ALEPH, DELPHI, L3 and OPAL and at SLC by the SLD
Collaboration are two-fermion production processes in e+e− collision, i.e.

e+e− → γ, Z → f f̄ ,

with

f f̄ = νν̄(νeν̄e, νµν̄µ, ντ ν̄τ ) (invisible final states),

l+l−(e+e−, µ+µ−, τ+τ−) (charged leptons final states),

qq̄(uū, dd̄, ss̄, cc̄, bb̄) (hadron final states) .

About 16 millions of Z0 events have been detected at LEP and about 100 thousands at
SLC, using in the latter polarized electron beams. Thanks to the very large data sample,
a remarkable precision has been reached in the measurements of the Z-boson properties
and observables, such as mass, total and partial decay widths, production cross sections
and forward-backward asymmetries. For example, the mass of the Z0 boson is at present
known with a relative error of 2×10−5, MZ = 91186.7±2.0 MeV; the total Z0 decay width
has been measured with a relative error of 1×10−3, i.e.ΓZ = 2494.8±2.5 MeV [7,8]. The
evolution with time of the experimental uncertainties on MZ and ΓZ during the years
1989-1997 is shown in Fig. 1. Three years of data taking at LEP1 (1991, 1993 and 1995)
were devoted to a precision scan around the resonance, doing measurements also off-peak
in the range 88-95 GeV; the rest of data taking was performed exclusively on the Z0

peak. Several technological ingredients contributed to reach the fantastic performances
of the LEP1 program summarized in Fig. 1. For instance, the method of resonant spin
depolarization adopted in the LEP beam energy measurement allowed to reach a very
precise calibration, of the order of 1 MeV. Quite curiously, many important unexpected
phenomena affected LEP energy calibration during operation: tide effects and field rise
due to the passage of the TGV on the nearby railway are probably the two most famous
examples. The installation of precision luminometers also contributed significantly to
the success of the LEP program, allowing a luminosity measurement at the level of 0.1%
or better, that is unavoidable to make optimal use of the high statistics collected at
LEP. In parallel with the technological and experimental progress, a large effort was
undertaken by hundreds of theorists in the calculation of radiative corrections. The
excellent performance of the machine, associated with the above theoretical effort, allowed
to test the fine structure of the Standard Model of electroweak interactions with an
unprecedented level of precision (precision physics at LEP). In this sense, precision tests
at the Z0 peak can be compared with classical tests of Quantum Electrodynamics (QED),
like g − 2 and Lamb shift experiments. Besides a highly nontrivial test of the standard
theory at the level of quantum loops, the availability of both accurate measurements and
calculations provided the opportunity of putting limitations on models predicting physics
beyond the standard model.

After the long data taking at the Z0 pole and a short run at intermediate energy
in the 1995 fall (LEP1.5 phase), the second phase of LEP (LEP2) started operating in
1996. The main reason for the energy upgrade of the LEP machine was the precise
measurement of the properties of the charged vector bosons of the weak interaction, the
W± bosons, through the study of the reaction

e+e− → W+W− → f1f̄2f3f̄4 ,
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Fig. 1. – The time evolution of the errors on MZ and ΓZ (from [7]).

with the following possible four-fermion final-states

lν̄l l̄
′νl′(l = e, µ, τ) (leptonic final states),

lν̄lq1q̄2(l = e, µ, τ ; q = u, d, c, s) (semi-leptonic final states),

q1q̄2q3q̄4(q = u, d, c, s) (hadronic final states) .

The 1996 LEP2 run was split into two parts. The first run was at the centre of mass
energy

√
s = 161.3 GeV, i.e. 0.5 GeV above the nominal WW production threshold, while

the second one at
√

s = 172 GeV. The current LEP2 schedule foresees running during
the years 1997-1999 with centre of mass energies from 184 GeV in 1997 to 194 GeV in
1998-1999. Compared to LEP1, the LEP2 physics potential will be characterized by a
statistical error of the order of 1%, instead of 0.1% at LEP1. Nonetheless, also LEP2
has to be considered as a machine for precision physics, since it will allow to measure
the mass of the W boson with an envisaged precision of 40-50 MeV, that is better than
the current best determination of MW at hadron machines, and to study in detail the
couplings of the W ’s with the other gauge bosons γ and Z0, thus directly probing the
non-abelian nature of the electroweak theory. Therefore, the LEP2 experimental program
does constitute a nice completion of the precision studies at LEP1 and SLC. Needless to
say, besides the precision measurement of the properties of the charged vector bosons,
LEP2 could also provide important pieces of information on the Higgs boson and physics
beyond the SM.
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In the recent few years, several reviews on the status of precision measurements at
LEP1/SLC and of the calculation of radiative corrections in the SM have been published
in the literature. From an experimental point of view, the main aspects of precision tests
at LEP1/SLC have been summarized for instance in ref. [9]. The concepts and results
of the calculation of radiative corrections have been reviewed for instance in ref. [10].
Before the start of the LEP1/SLC operations, the status of theoretical calculations and
computational tools was described in refs. [11–13]. In view of the final analysis of the
precision data, the status of precision calculations was critically reviewed in ref. [14],
with special emphasis on the uncertainty inherent to the theoretical predictions. The
theoretical results and related software necessary for the experiments at LEP2 were
summarized in ref. [15].

The LEP/SLC physics program is a very wide one, ranging from precision measure-
ments of vector boson properties, to QCD studies, searches of new particles, determina-
tion of dynamical properties of heavy flavours, and so on. The main goal of the present
review is to give a comprehensive account of precision physics at LEP, meant as the whole
of precision tests of the electroweak sector of the SM and its implications for new physics.
More precisely, the theoretical apparatus needed for precision calculations at LEP/SLC
will be described and its link with data analysis pointed out, aiming at emphasizing the
intimate and fruitful connection between theoretical ideas and experimental results. Too
technical details are inevitably omitted; however, particular care has been devoted to
compiling an as complete as possible bibliography, where the interested reader can find
additional information. The experimental data considered throughout the paper are the
ones presented at the 1997 Summer Conferences [7, 8, 16].

The review is organized as follows. Section 2 is dedicated to small-angle Bhabha
scattering and its relevance for the luminosity measurement. In Sect. 3 the large-angle
processes at the Z0 resonance, relevant for the study of the Z-boson properties, are con-
sidered, reviewing the theoretical ingredients necessary for high-precision calculations of
the Z-boson observables. It is then shown how the theoretical tools developed are used
to fit the experimental data, in order to determine the top-quark and Higgs-boson masses
and the strong coupling constant αs, and eventually establish the existence of new physics
beyond the SM (Sect. 4). The most important issues of electroweak physics at LEP2 are
covered in Sect. 5, where two-fermion processes far from the resonance (Sect. 5

.
1) and

four-fermion processes at and above the W -boson pair production threshold (Sect. 5
.
2)

are discussed. At last, the conclusions are drawn in Sect. 6. Three technical appen-
dices are dedicated to relevant theoretical subjects common to various items of LEP
physics, namely the universal photonic corrections (Appendix A), the vacuum polariza-
tion correction (Appendix B) and the scalar integrals and dimensional regularization
(Appendix C).

2. – Small-Angle Bhabha Scattering and the Luminosity Measurement

The process e+e− → e+e− (Bhabha scattering) is a peculiar one. Actually, at
a difference from all the other two-fermion production processes, that occur as e+e−

annihilation, i.e. are s-channel processes, the amplitude for e+e− → e+e− receives con-
tributions both from s- and t-channel diagrams (see Fig. 2). In the energy region typical
of LEP1/SLC (

√
s ≃ MZ , MZ being the Z-boson mass) the Bhabha scattering process

exhibits completely different features, depending on the fact that the final state elec-
trons are detected at large or small scattering angles. In the first case, the amplitude is
dominated by s-channel subprocesses, and in particular by the e+e− → Z0 annihilation,
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in such a way that the process is sensitive to the Z-boson properties. In the second
one, the smaller is the scattering angle the larger is the contribution of the t-channel
photon-exchange diagram, in such a way that for sufficiently small scattering angles
Bhabha scattering is essentially a pure QED process, substantially independent of the
Z0 physics. These dynamical features of Bhabha scattering allow to use it both as a tool
for studying Z0 physics (large-angle cross sections and forward-backward asymmetries)
and as a tool for the high precision luminosity monitoring (small-angle cross section).
The first case will be examined in Sect. 3, while the second one will be addressed in the
following. Before starting the discussion on small-angle Bhabha scattering, it is worth
noticing that a large amount of work has been dedicated to Bhabha scattering in general.
The interested reader is referred for instance to refs. [17] and [18] for a detailed account
and a comprehensive compilation of the relevant literature.

2
.
1. Luminosity Monitoring. – The luminosity L of a collider is the proportionality

constant between the event rate dN/dt and the corresponding cross section σ for any
given process, according to the relation

dN

dt
= Lσ, N = σ

∫

dtL = σL.(1)

In the practice, an experiment measures the number of events for a given process and,
by making use of the inverse of eq. (1), quotes the experimental cross sections as

σ =
1

L
N.(2)

From eq. (2) it is clear that, in order to fully exploit the experimental information con-
tained in N , the error affecting the luminosity L must be smaller than the experimental
error affecting N . The luminosity of a collider depends in a highly non-trivial way on ma-
chine and beam parameters. It is of course possible to compute it given these parameters,
but, in particular for LEP, such a determination is affected by an intrinsic uncertainty
which is completely unsatisfactory in view of the extremely high experimental accuracy.
This is why the luminosity is monitored adopting a different strategy, namely by identi-
fying a process which is in principle not affected (or only slightly affected) by unknown
physics, so that its cross section can be computed within a firmly established theory, and
determining the luminosity via the relation

L =
1

σknown
N.(3)

The luminosity determined by eq. (3) is then used for the determination of all the ex-
perimental cross sections via eq. (2) (for a review on the precision determinations of the
accelerator luminosity in LEP experiments, the interested reader is referred to [19] and
references therein).

Such a process does exist, and is the Bhabha scattering e+e− → e+e− at small
scattering angle. The main reasons why the small-angle Bhabha scattering (SABH)
fulfils the requirements just described are the following:

• the SABH process is substantially a QED process, dominated by photon exchange
in the t-channel; this, in turn, implies that

– its theoretical cross section is dominated by a contribution that is in principle
calculable by means of perturbative QED at arbitrary precision;
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– the Z-boson exchange contribution to its cross section, via Z-boson annihila-
tion in the s channel, Z-boson exchange in the t channel and Z-γ interferences,
is very small; hence a detailed knowledge of the Z-boson properties, like the
precise value of its mass and decay width, to be determined in large-angle
processes, has a negligible influence on the luminosity monitoring;

• the SABH cross section is large, and can be rendered much larger than the typical
Z-boson annihilation peak cross sections provided the detection angular region
for the SABH events is sufficiently close to the beam pipe, so that the statistical
uncertainty of N in the r.h.s. of eq. (3) can be kept small.

e-

e+

γ , Z

e-

e+

e-

e+

γ , Z

e-

e+

Fig. 2. – The Feynman diagrams for the tree-level Bhabha scattering cross section.

The tree-level differential cross section corresponding to t-channel photon exchange
is given by (see for instance ref. [17] and references therein)

dσ0

dΩ
=

α2

4s

2

(1 − cos ϑ)2
[

4 + (1 + cos ϑ)2
]

,(4)

where ϑ is the electron scattering angle,
√

s is the total centre of mass (c.m.) energy and
α is the QED coupling constant.

The calculation of the theoretical SABH cross section to be inserted into eq. (3)
will involve in general the calculation of radiative corrections. These are numerically
dominated by photonic corrections, i.e. by those corrections obtained by adding real or
virtual photon lines to the tree-level amplitudes, which in turn depend very critically
on the phase space integration region. Hence, in order to exploit eq. (3) for the high
precision luminosity monitoring, the theoretical cross section must be computed by taking
into account carefully the experimental definition of a SABH event. Skimming over the
details of the various SABH Event Selections (ES’s), which vary from experiment to
experiment, the general features of SABH event are the following:

• the forward and backward luminometers cover an angular region of few degrees,
starting from, say, 1◦;

• a SABH event is detected as a signal coincidence of the forward luminometer with
the backward luminometer;
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• for technical reasons, asymmetric angular acceptances are adopted; for instance,
a narrower (N) acceptance on the e+ side and a wider (W) acceptance on the e−

side; the results of the NW and WN ES’s are averaged;

• for technical reasons, a calorimetric measurement on the final-state electrons is
performed; this means that experimentally a final-state electron cannot be distin-
guished by a final-state electron accompanied by collinear photons;

• very mild energy/acollinearity cuts are imposed on the scattered electrons, com-
patible with the previous items.

From the general features of a SABH event, and taking into account that photonic
radiation is mostly soft and/or collinear to the charged lines, the following picture can
be drawn:

• events with the final-state electrons inside the luminometers, accompanied by soft
photons or initial-state photons lost in the beam pipe are detected as good SABH
events;

• since initial-state radiation (ISR) causes a boost of the c.m. of the reaction, and
since the final-state electrons cannot be too acollinear, there is a natural cut-off on
the amount of ISR allowed;

• events with the final-state electrons inside the luminometers accompanied by col-
linear photons are detected as good SABH events; this means that final-state ra-
diation (FSR) must be integrated over a finite region surrounding the final-state
electron; this in turn implies, for a sort of Kinoshita-Lee-Nauenberg (KLN) mech-
anism [20], that for FSR the so-called “logarithmically enhanced” corrections are
greatly suppressed (more on this in Sect. 2

.
3);

• initial- or final-state photons can convert into additional fermionic pairs, which for
most of the events are lost in the beam pipe or collinear to the final-state electrons;

• events accompanied by the radiation of virtual photons are degenerate with the
elastic event;

• since in general there is no particle identification in the luminometers, it can happen
that, for instance, a final-state electron radiates a hard photon in such a way that
the photon hits the luminometer, while the electron is lost; also such an event is in
general registered as a good SABH event.

Given the above picture, it is clear that in order to perform the phase space in-
tegration over all the configurations that correspond to a good SABH event the most
versatile tool, i.e. a Monte Carlo (MC) integrator and/or event generator, is mandatory.
Nonetheless, as a matter of fact the calculations necessary to compute the theoretical
SABH cross section are so sophisticated that all kind of information, even analytical
or semi-analytical, are precious. A detailed account of the status of all the theoretical
calculations available at present will be given in Sect. 2

.
4. It is worth noting that the

total error affecting the determination of the luminosity by means of eq. (3) receives
contributions both from the experimental error of the number of events N and from the
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theoretical error of the SABH process cross section. Actually, by performing the standard
propagation of errors on eq. (3) one obtains

δL

L
=

δN

N
⊕ δσ

σ
,(5)

where the first term in the r.h.s. is the experimental error, the last one is the relative
error on the theoretical cross section and ⊕ means the sum in quadrature.

2
.
2. Sensitivity of Observables to Luminosity. – The LEP experiments determine the

Z-boson parameters by means of combined fits to the measured hadronic and leptonic
cross sections and leptonic forward-backward asymmetries (see Sects. 3 and 4 for more
details). In particular, in order to facilitate the comparison and the combination of the
results, the LEP Collaborations quote, besides other choices, the following set of nine
parameters:

MZ , ΓZ , σ0
h, Re,µ,τ , Ae,µ,τ

FB ,(6)

where MZ and ΓZ are the Z-boson mass and total width, respectively, σ0
h is the hadronic

peak cross section for Z-boson exchange only, Ri are the ratios of the hadronic width
to the i-th leptonic width and Ai

FB are the leptonic forward-backward asymmetries at√
s = MZ for Z-boson exchange only. These parameters are quoted after having been

corrected for the effect of ISR, final-state QED and QCD corrections, as well as for t-
channel and s-t interference for e+e− final states. By assuming lepton universality, the
three values of Ri and Ai

FB are combined into a single Rl and Al
FB, and the corresponding

fit is a 5-parameter fit. In both cases, the so called derived parameters, such as for
instance the leptonic width and the number of light neutrinos, are computed by expressing
them as functions of the fundamental parameters.

Table I. – Line shape and asymmetry parameters from 5-parameter fits to the data of the four
LEP1 experiments, made with a theoretical luminosity error of 0.16%, 0.11% and 0.06%. In the
lower part of the Table also derived parameters are listed (from ref. [18]).

theoretical luminosity error 0.16% 0.11% 0.06%

MZ [GeV] 91.1884 ± 0.0022 91.1884 ± 0.0022 91.1884 ± 0.0022
ΓZ [GeV] 2.4962 ± 0.0032 2.4962 ± 0.0032 2.4961 ± 0.0032
σ0

h [nb] 41.487 ± 0.075 41.487 ± 0.057 41.487 ± 0.044
Rl 20.788 ± 0.032 20.787 ± 0.032 20.786 ± 0.032
Al

F B 0.0173 ± 0.0012 0.0173 ± 0.0012 0.0173 ± 0012

Γh [GeV] 1.7447 ± 0.0030 1.7447 ± 0.0028 1.7446 ± 0.0027
Γl [MeV] 83.93 ± 0.13 83.93 ± 0.13 83.93 ± 0.12
σ0

l [nb] 1.9957 ± 0.0044 1.9958 ± 0.0038 1.9959 ± 0.0034
Γh/ΓZ [%] 69.90 ± 0.089 69.90 ± 0.079 69.89 ± 0.072
Γl/ΓZ [%] 3.362 ± 0.0037 3.362 ± 0.0032 3.362 ± 0.0028
Γinv [MeV] 499.9 ± 2.4 499.9 ± 2.1 499.9 ± 1.9
Γinv/Γl [%] 5.956 ± 0.030 5.956 ± 0.024 5.956 ± 0.020
Nν 2.990 ± 0.015 2.990 ± 0.013 2.990 ± 0.011

In order to understand the effect of the luminosity error on the physical observables,
one can assume, as a first approximation, that the luminosity error affects, among the
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fundamental parameters, the hadronic peak cross section only, in a way that is determined
from eq. (2) by performing the standard propagation of errors:

δσ0
h = (δσ0

h)exp ⊕ σ0
h

δL

L
.(7)

In eq. (7) the first term in the r.h.s. is the experimental error on the hadronic peak cross
section, while the second term is the error on the cross section as due to the luminosity
uncertainty. The influence of the luminosity error on the derived parameters is then
determined by their dependence on σ0

h.
Actually, in the practice the LEP Collaborations combine their results, propagating

both the systematic and statistical uncertainties, and taking into account all the corre-
lations between the parameters by means of the full covariance matrix. Table I shows
an example of the results of such a procedure, by assuming a relative luminosity error of
0.16%, 0.11% and 0.06%, respectively. As can be noticed, the luminosity error affects,
besides the hadronic peak cross section σ0

h, almost all the derived parameters.

2
.
3. Radiative Corrections to Small-Angle Bhabha Scattering. – The radiative cor-

rections to the SABH process are dominated by photonic corrections, i.e. by those cor-
rections coming from graphs obtained from the tree-level ones by adding real and/or
virtual photon lines, and by the vacuum polarization correction. This last effect is taken
into account by simply using the running QED coupling constant α(−t), where t is the
squared four-momentum transfer of the reaction, as shown in Appendix B. In the present
section, some generalities on photonic corrections are reviewed.

Once the infra-red (IR) divergence present in real and virtual corrections separately
has been canceled by properly summing over all the degenerate states, the n-th order
QED correction takes on the following form

σ(n) =
(α

π

)n n
∑

k=0

a
(n)
k Lk(Q2),(8)

where σ(n) is the n-th order contribution to the corrected cross section, L(Q2) = LQ2 −1
and LQ2 = ln(|Q2|/m2

e) is the so called collinear logarithm, Q2 being a typical scale
involved in the process. The collinear logarithm LQ2 originates from the phase space
integration of the emitted photon, and in particular from those configurations in which
the emitted photon is almost collinear to the radiating charged fermion line. In the
SABH process, the relevant scale entering the collinear logarithm is Q2 = −t, t being
the squared four-momentum transfer of the reaction. It is worth noticing that, due to
the smallness of the electron mass me, Lt is of the order of 15 for −t ≃ 1 GeV2, i.e. for
values of the four-momentum transfer typical of small-angle processes at LEP. This is
the reason why QED radiative corrections are numerically very relevant.

The coefficients a
(n)
k in eq. (8) are in turn given by the following general expression

a
(n)
k =

k
∑

j=0

b
(n)
kj lj,(9)

where l is the so called IR logarithm, l ≃ ln(E/Emax
γ ), E being the beam energy and

Emax
γ being some cutoff on the maximum photon energy, respectively. As a property of

QED corrections, the IR logarithm l can become huge when shrinking the photon phase
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space. In general, however, such corrections depend critically on the details of the ES
considered.

The purpose of the present discussion is to derive a sort of rule of thumb able
to provide the order of magnitude of the various QED corrections. To this aim, an
approximate calculation is a useful guideline. As a general warning, however, it is worth
noting that the coefficients ak, due to the presence of the IR logarithm, are IR sensitive,
so that they can become very large in pathological situations, i.e. when very tight cuts
on the emitted photons are imposed. After this caveat, the corrected cross section σ for
the SABH process in the leading logarithmic (LL) approximation, obtained for instance
by means of the Structure Function method, taking into account initial- and final-state
radiation but neglecting convolution effects (see Appendix A for more details) can be
written as [17]

σ ≃ σ0ε
β.(10)

The symbols in eq. (10) have the following meaning: σ0 is the tree-level cross section, β
is given by

β = 2
α

π
L(Q2)(11)

and ε = εiεf is the product of two, in principle different, cutoffs for ISR and FSR.
The series expansion of eq. (10) up to third order in α reads:

σ ≃ σ0

(

1 + β ln ε +
1

2!
β2 ln2 ε +

1

3!
β3 ln3 ε

)

+ O(β4).(12)

It is worth noting that in the LL approximation the coefficients an are proportional to
the n-th power of the IR logarithm l.

Table II. – The canonical coefficients indicating the generic magnitude of various leading and
subleading contributions up to third-order, for a non-calorimetric ES. The collinear logarithm
Lt = L = ln(|t|/m2

e) is calculated for ϑmin = 30 mrad and ϑmin = 60 mrad and for two values
of the c.m. energy: at LEP1 (

√
s = MZ), where the corresponding |t| = (s/4)ϑ2

min are 1.86
and 7.53 GeV2, and at LEP2 energy (

√
s = 200 GeV), where the corresponding |t| are 9 and

36 GeV2, respectively (from ref. [18]).

ϑmin = 30 mrad ϑmin = 60 mrad

LEP1 LEP2 LEP1 LEP2

O(αL) 4α
π
L 137×10−3 152×10−3 150×10−3 165×10−3

O(α) α
π

2.3×10−3 2.3×10−3 2.3×10−3 2.3×10−3

O(α2L2) 1
2

(

4α
π
L
)2

9.4×10−3 11×10−3 11×10−3 14×10−3

O(α2L) α
π

(

4α
π
L
)

0.31×10−3 0.35×10−3 0.35×10−3 0.38×10−3

O(α3L3) 1
3!

(

4α
π
L
)3

0.42×10−3 0.58×10−3 0.57×10−3 0.74×10−3

In order to exploit the information contained in eq. (12), it is necessary to specify
the main features of the ES one is considering. Let us begin with a non-calorimetric
ES. It is not a realistic case; nonetheless, it can be considered as a very useful benching
situation. Such an ES is characterized by the fact that in principle it is possible to
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separate final-state fermions from the photon(s) radiated by them, in such a way that
a maximum photon energy cutoff, irrespective of the fact that the photon comes from
initial- or final-state particles, is meaningful. For such an ES, one can take in eq. (12)

ε ≃ ε2
i ≃ ε2

f ≃ ε2
nc,(13)

in such a way that eq. (12) becomes

σ ≃ σ0

(

1 + 2β ln εnc +
1

2!
(2β)2 ln2 εnc +

1

3!
(2β)3 ln3 εnc

)

+ O(β4).(14)

By defining now as canonical coefficients the coefficients appearing in front of the IR
sensitive terms, the canonical coefficients of the O(αnLn) corrections, with 1 ≤ n ≤
3, can be directly read off eq. (14), and are 2β, (2β)2/2 and (2β)3/3!, respectively.
The algorithms described in Appendix A allow to take these corrections into account
naturally. Going beyond the LL approximation, eq. (14) does not provide information
any more. Actually, the non-leading corrections are typically process dependent, and can
be computed only by means of a full diagrammatic calculation. On the other hand, a
non-collinear photon is known to produce a correction whose typical size is α/π, which
sets the size of the non-leading O(α) correction. Moreover, the O(α2L) corrections come
from configurations for which there is one collinear and one non-collinear photon, so
that their typical size is 2βα/π. The situation is summarized in Tab. II, where also
a numerical estimate of the canonical coefficients for a non-calorimetric measurement
is given. It is worth noticing that both these non-leading corrections are relevant for
obtaining a theoretical error of the order of 0.1%.

Let us now consider the more realistic case of a calorimetric ES (see Sect. 2
.
1).

For such an ES, it is not possible in principle to separate a final-state fermion from its
accompanying radiation. This means that one is effectively almost inclusive on FSR, i.e.
that εf ≃ 1 and ε ≃ εi = εc. Equation (14) is then modified as follows:

σ ≃ σ0

(

1 + β ln εc +
1

2!
β2 ln2 εc +

1

3!
β3 ln3 εc

)

+ O(β4).(15)

By comparing eq. (15) with eq. (14), one obtains the relation between the canonical
coefficients for a non-calorimetric ES and those of a calorimetric ES. In particular, the
O(αnLn) coefficients are reduced by factor of 2, 4 and 8 for n = 1, 2, 3, respectively. One
can not expect a priori a reduction in the coefficient of the O(α) correction. Hence, there
is a reduction of a factor of 2 in the coefficient of the O(α2L) correction. The situation
is summarized in Tab. III.

At present, there is complete control of the O(αL, α, α2L2, α3L3) corrections, for an
arbitrary ES. (1) The O(α2L) corrections are not fully under control, in the sense that are
either analytically known for non-realistic (non-calorimetric) ES’s or only approximated
for realistic (calorimetric) ES’s (see Sect. 2

.
4 for more details). As it will be seen in the

following, the approximate knowledge of the O(α2L) corrections is the main source of
theoretical error on the SABH cross section. An illustrative plot concerning photonic
radiative corrections to the SABH process can be found in Fig. 3. The tree-level cross
section corresponding to the ES adopted is σ0 = 140.02 nb. As can be seen in the first

(1) Actually, at present a theoretical error of technical origin is attributed to the O(α3L3) corrections,
that however is negligible with respect to the one due to missing O(α2L) corrections (see Sect. 2

.
5).
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Table III. – The relation between the canonical coefficients for a non-calorimetric ES (see
Tab. II) and a calorimetric ES.

non-cal. ES reduction factor cal. ES

O(αL) 4α
π
L 1/2 2α

π
L

O(α) α
π

1 α
π

O(α2L2) 1
2

(

4α
π
L
)2

1/4 1
2

(

2α
π
L
)2

O(α2L) α
π

(

4α
π
L
)

1/2 α
π

(

2α
π
L
)

O(α3L3) 1
3!

(

4α
π
L
)3

1/8 1
3!

(

2α
π

L
)3

plot, the photonic corrections reduce the cross section by an amount ranging from around
6% to around 16%, depending on the zmin cut (see the Figure for the definition of zmin).
In the second plot, one can see that the non-leading O(α) corrections reduce the cross
section by around 1.5%, the higher-order LL corrections increase it by about 0.5%, and
the non-leading O(α2L) corrections introduce a further increase of about 0.1÷0.2%. All
these corrections are relevant for a theoretical prediction at the 0.1% level.

There are also other radiative corrections to the SABH process, which however are
much smaller than the photonic ones. They are the following:

• light pairs: these corrections arise from photons converting into f f̄ pairs, and are
dominated by e+e− pairs; they give typically a contribution of the order of few
10−4 with respect to the tree-level cross section (see [24] and references therein);

• QED radiative corrections to Z-γ interference: they alter sizably the tree-level Z-γ
interference contribution, since it changes sign when crossing the resonance; they
are under control (see [25], [26] and references therein).

Non-QED corrections other than vacuum polarization are absolutely negligible.

2
.
4. Computational Tools. – In the present section the basic features of the computer

codes available for the calculation of the SABH process cross section are briefly summa-
rized. The aim of this discussion is to make an inventory of the theoretical approaches
to the problem, and of their realizations in the form of FORTRAN codes, rather than to
give an exhaustive description of the programs, which can be found in the literature.

BHAGEN95 [27] — It is a MC integrator for both small- and large-angle Bhabha scattering.
It is a structure function based program (see Appendix A

.
1) for all-orders resummation,

including complete photonic O(α) and leading logarithmic O(α2L2) corrections in all the
channels (long writeup in [18]).

BHLUMI [28, 29] — It is a MC event generator for small-angle Bhabha scattering. It
includes multi-photon radiation in the framework of YFS exclusive exponentiation (see
Appendix A

.
3). Its matrix element includes complete O(α) and leading logarithmic

O(α2L2) corrections. Some non-leading O(α2L) corrections are also taken into account.
The program provides the full event in terms of particle flavors and four-momenta with
an arbitrary number of additional radiative photons. It is the standard package used by
the LEP Collaborations for the calculation of the theoretical SABH cross section.
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Fig. 3. – The effect of photonic corrections to the SABH process at different perturbative
order/accuracy as a function of zmin = E+E−/E2

beam, at
√

s = 92.3 GeV. E+,− are the energies
deposited in the positron and electron clusters, respectively. The ES adopted is CALO2 (see
ref. [18]). The tree-level cross section for this ES is σ0 = 140.02 nb. The first plot shows the
cross section including LL O(α), exact O(α), exact O(α) plus higher-order LL and the same
plus non-leading O(α2) corrections. In the second plot, ∆σ/σ means the effect of non-leading
O(α) corrections (triangles), of higher-order LL corrections (squares), and an estimate af the
effect of non-leading O(α2L) corrections (circles). The numerical results have been obtained by
SABSPV [21–23].

LUMLOG — It is a MC event generator for the SABH process (part of BHLUMI, see [28]).
Photonic corrections are treated at the leading logarithmic level, in the strictly collinear
approximation, and in inclusive way. Structure functions exponentiated up to O(α3L3)
are included. At the O(α2) it includes the leading corrections of the kind O(α2L2). It
is used to improve OLDBIS (more on this later) in the sector of higher-order photonic
corrections.

NLLBHA [30] — It is the FORTRAN translation of the only available fully analytical non-
leading second-order calculation. At the O(α2) it includes all the next-to-leading cor-
rections O(α2L). It is also able to provide O(α3L3) photonic corrections and light pair
corrections, including the simultaneous emission of photon and light pair. It is a semi-
analytical result, at present available for a bare ES.

OLDBIS [31] — It is a classical MC event generator for the Bhabha process (the modern-
ized version is part of BHLUMI, see [28]). It includes exact O(α) photonic corrections. It
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is used to improve LUMLOG in the sector of O(α) photonic corrections.
OLDBIS+LUMLOG — It is the “tandem” developed in parallel with BHLUMI in order to take
into account higher-order corrections (LUMLOG) on top of the exact O(α) result (OLDBIS).
The matching between O(α) and higher-order corrections is performed in additive form.
This means that no O(α2L) corrections are present.
SABSPV [21, 22] — It is a MC integrator, designed for small-angle Bhabha scattering.
It is based on a proper matching of the exact O(α) cross section for t-channel photon
exchange [17, 32] and of the leading logarithmic results for the full Bhabha scattering
cross section in the structure function approach [33]. The matching is performed both
in additive and factorized forms, the first form being used for comparisons only. In its
default mode (factorized cross section) it includes the bulk of the O(α2L) corrections.

1

α L α

α2L2 α2L α2

α3L3 α3L2 α3L α3

α4L4 α4L3 α4L2 α4L α4

: : : : :. . . . .

Fig. 4. – The general structure and the present situation concerning QED corrections to the
SABH process. The thick line isolates the corrections exactly known for every ES. The dashed
line points out the O(α2L) corrections. They are at present the main source of theoretical error,
since they are either approximately known for realistic ES’s or exactly known for unrealistic
ES’s.

The situation of the computer codes available for the SABH process can be summa-
rized as follows:

• with the exception of LUMLOG, all the other codes implement exact O(α) photonic
corrections for the SABH process; with the exception of OLDBIS, all the other codes
implement some form of higher-order photonic corrections;

• BHAGEN95, OLDBIS+LUMLOG and SABSPV in the additive form include higher-order
corrections in the leading logarithmic approximation;

• BHLUMI and SABSPV in its default form include also the bulk of the O(α2L) correc-
tions, for every ES;

• NLLBHA includes the full set of the O(α2L) corrections, but limited to a bare ES.
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The situation concerning the QED corrections at present under control for every ES
is described in Fig. 4.

2
.
5. The Total Theoretical Error. – Any theoretical prediction performed by means

of a perturbative theory is affected by an intrinsic uncertainty because the perturbative
series must be truncated at some finite order (with the possible exception of those cor-
rections that can be resummed to all the perturbative orders, such as, for instance, the
universal photonic corrections). Hence the theoretical error of a perturbative prediction
is dominated by the largest unknown corrections, i.e. by the lowest order corrections not
under control. When applying the above definition to the SABH process, it turns out
that there are several sources of theoretical error, namely the ones quoted in Tab. IV.
Up to date, the most important one is due to the missing photonic O(α2L) corrections,
which at present are not fully under control as shown in Fig. 4.

Table IV. – Summary of the total (physical+technical) theoretical uncertainty for a typical
calorimetric detector. For LEP1, the above estimate is valid for the angular range within
1◦ − 3◦, and for LEP2 it covers energies up to 176 GeV, and angular ranges within 1◦ − 3◦ and
3◦ − 6◦ (from ref. [34]).

LEP1 LEP1 LEP2

Type of correction/error Past Present Present

(a) Missing photonic O(α2L) 0.15% 0.10% 0.20%
(b) Missing photonic O(α3L3) 0.008% 0.015% 0.03%
(c) Vacuum polarization 0.05% 0.04% 0.10%
(d) Light pairs 0.01% 0.03% 0.05%
(e) Z-boson exchange 0.03% 0.015% 0.0%

Total 0.16% 0.11% 0.25%

Moreover, when considering the calculation of a cross section for a realistic ES,
one has to implement the theoretical formulation of the problem in a computational
tool, typically a FORTRAN code performing all the numerical integrations. In so doing,
other sources of uncertainty are added, that are of technical origin, such as, for instance,
approximations in the formulae, numerical algorithms performing the phase space inte-
grations and so on. On the whole, also the actual implementation in itself of a given
theoretical formulation gives rise to a finite contribution to the total theoretical error.

From now on, the precision reached in principle by means of a given theoretical
formulation will be referred to as the “physical precision” of the approach, as distinct
from the precision reached in its actual implementation, which will be referred to as the
“technical precision”.

As a matter of fact, the LEP Collaborations use the MC BHLUMI to compute the
SABH theoretical cross section. Hence, a key issue is determining the theoretical error
of the prediction by BHLUMI. Since the codes described in the previous Section differ
from one another in the treatment of higher-order next-to-leading corrections, a careful
comparison of their predictions together with a deep understanding of their differences
can be used to infer an estimate of the total theoretical error on the SABH cross section.

The most extensive work in this directions has been performed in the context of
the Workshop Physics at LEP2, held at CERN, Geneva, during 1995, and in particular
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WW: #i 2 (#Wmin; #Wmax); NN: #i 2 (#Nmin; #Nmax)NW: #1 2 (#Wmin; #Wmax); #2 2 (#Nmin; #Nmax) s0 > zmins

Forward hemisphere

-'10 2�

6#1-#Wmax
-#Wmin s-#1 @@@@I E16'1

Backward hemisphere

-'20 2�

6#2-#Nmax
-#Nmin s@@R#2 @@@@I E26'2

Fig. 5. – Geometry and acceptance of the simple (non-calorimetric) ES BARE1. This ES re-
stricts the polar angles ϑi in the forward/backward hemispheres and requires a certain minimum
energy to be detected simultaneously in both hemispheres. Photon momentum is not constrained
at all. The entire “fiducial” ϑ-range, i.e. the wide (W) range, is (ϑW

min, ϑ
W
max) = (0.024, 0.058) rad

and the narrow (N) range is (ϑN
min, ϑ

N
max), where ϑN

min = ϑW
min + δϑ, ϑN

max = ϑW
max − δϑ and

δϑ = (ϑW
max − ϑW

min)/16. This ES can be symmetric WW or NN, or asymmetric NW (see the
description in the figure). The energy cut s′ > zmins involves the momenta of the outgoing e±

(s′ = (q+ + q−)2) only (from ref. [18]).

within the Working Group “Event Generators for Bhabha scattering” [18], whose main
tasks were

• to make an inventory of all the available MC event generators, developed by inde-
pendent collaborations, for Bhabha processes at LEP1 and LEP2, both at small
and large scattering angles;

• to improve the understanding of their theoretical uncertainties by means of sys-
tematic comparisons of MC’s between themselves and with non-MC approaches.

The main emphasis was put on SABH processes, because of the pressing need to
match the theoretical precision of the calculations with the much improved experimental
accuracy (≤ 0.1%) of the luminosity measurement. In particular, the main achievement
of the Working Group, which is the result of a combined effort by several collaborations
addressing several theoretical and experimental issues, was the reduction of the theoret-
ical error on the SABH cross section from 0.16% to 0.11% for typical ES’s at LEP1, and
a first estimate of the theoretical error on the SABH cross section at LEP2 [34].

The various components of the theoretical error on the SABH cross section are
quoted in Tab. IV (see ref. [34]), where a summary of the past and present situation at
LEP1 together with the present estimate valid for LEP2 is given. The errors in the Table
are understood to be attributed to the cross section for any typical (asymmetric) ES,
for a LEP1 experiment in the angular range 1◦ − 3◦, calculated by BHLUMI 4.03 [28].
In the case of LEP2, the estimate extends to the angular range 3◦ − 6◦, and also to a
possible narrower angular range (say 4◦ − 6◦) that may be necessary due to the effect of
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WW: #cli 2 (#Wmin; #Wmax); NN: #cli 2 (#Nmin; #Nmax)NW: #cl1 2 (#Wmin; #Wmax); #cl2 2 (#Nmin; #Nmax) Ecl1 Ecl2 > zminE2beam

Forward hemisphere
-'10 2�

6#1
���#fmin
@@R#fmax -#Wmax
-#Wmin -#cl1 a @@@@I Ecl16'cl1

Backward hemisphere
-'20 2�

6#2-#Nmax -#Nmin@@R#cl2 a @@@@I Ecl26'cl2
Fig. 6. – Geometry and acceptance of the calorimetric ES SICAL2. This ES restricts the polar
angles ϑi in the forward/backward hemispheres and requires a certain minimum energy to be
detected simultaneously in both hemispheres. No restrictions on azimuthal angles ϕi are there.
The entire “fiducial” ϑ-range, (ϑf

min, ϑf
max) = (0.024, 0.058) rad, includes the wide (W) range

(ϑW
min, ϑW

max) and the narrow (N) range (ϑN
min, ϑN

max) exactly as depicted in the figure. This
ES can be symmetric WW or NN, or asymmetric NW. The energy cut and the ϑ-cuts involve
the definition of the cluster. Each side detector consists of 16 × 32 equal plaquettes. A single
plaquette registers the total energy of electrons and photons. The plaquette with the maximum
energy, together with its 3 × 3 neighborhood, is called cluster. The total energy registered in
the cluster is Ecl

i and its angular position is (ϑcl
i , ϕcl

i ), i = 1, 2. More precisely the angular
position of a cluster is the average position of the centers of all 3 × 3 plaquettes, weighted by
their energies (the definitions of ϕ’s are adjusted in such a way that ϕ1 = ϕ2 for back-to-back
configuration). The plaquettes of the cluster which spill over the angular range (outside thick
lines) are also used to determine the total energy and the average position of the cluster, as in
the backward hemisphere (from ref. [18]).

synchrotron radiation masks in the experiments. The entries include combined technical
and physical precision.

As can be seen in the Table, at the present stage the theoretical error is still domi-
nated by the error on photonic corrections, quoted in entries (a) and (b), and in particular
by the one due to missing O(α2L) corrections of entry (a). Since the error of entry (a)
is by far dominant with respect to all the other ones, it is worth devoting some space to
describe how it has been estimated, namely by adopting the following procedure:

• only the photonic corrections to the dominant part of the SABH cross section,
namely the one due to t-channel photon exchange, have been considered as a first
step;

• four families of ES’s have been defined (for the details concerning the definitions of
the ES’s the reader is referred to [18]); the simplest one, BARE1 (see Fig. 5), is an
ES in which cuts are applied only to the “bare” final-state fermions; the other ones,
CALO1, CALO2 and SICAL2, are calorimetric ES’s, implementing more and more
complex clustering algorithms; in particular, SICAL2 (see Fig. 6) is very similar
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to a “real” experimental ES; since photonic corrections are very sensitive to the
details of the ES, defining these four ES’s allows to span in detail the photonic
phase space; even if the ES BARE1 is far from realistic, the presently available
analytical calculation including the complete set of O(α2L) corrections refers to
such an ES, and so provides a very important cross-check of the MC programs;

• all the available codes have been run for all the ES’s, varying inside any ES the
threshold requirements for the final-state fermions/clusters;

• a test concerning the technical precision has been performed, namely comparing
the exact up to O(α) cross sections provided by the various codes; agreement at
the level of a few 10−4 relative deviation has been achieved;

• finally, the results of the codes including the full higher-order photonic corrections
have been compared, for all the situations explored (see Fig. 7).
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Fig. 7. – Monte Carlo results for the symmetric Wide-Wide ES’s BARE1, CALO1, CALO2
and SICAL2, for matrix elements beyond first order. Z-boson exchange, up-down interference
and vacuum polarization are switched off. The c.m. energy is

√
s = 92.3 GeV. zmin is the cut

condition on the final-state energies, defined as E+E−/E2 ≥ zmin, E−,+ being the final-state
energy of the bare electron and positron, respectively. The fiducial angular range is 0.024-
0.058 rad (for more details on the ES, the reader is referred to [18]). In the plot, the O(α2)Y F S

exp

cross section from BHLUMI 4.03 is used as a reference cross section (from refs. [18,34]).
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The result of this procedure allowed the definition of “one-per-mill regions”, referring
to realistic threshold cuts, within which most of the predictions lie. Moreover, for those
cases for which the predictions do not lie within the “one-per-mill regions”, the reasons
for the deviations involved have been carefully investigated and eventually understood.
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All Included

Fig. 8. – Monte Carlo results for various symmetric/asymmetric versions of the CALO2 ES,
for matrix elements beyond first order. Z-boson exchange, up-down interference and vacuum
polarization are switched ON. The c.m. energy is

√
s = 92.3 GeV. zmin is the cut condition on

the final-state energies, defined as E+E−/E2 ≥ zmin, E−,+ being the final-state energy of the
electron and positron clusters, respectively. The fiducial angular range is 0.024-0.058 rad (for
more details on the ES, the reader is referred to [18]). In the plot, the O(α2)Y F S

exp cross section
from BHLUMI 4.03 is used as a reference cross section (from refs. [18,34]).

An analogous procedure has been followed after the inclusion of all the relevant
radiative corrections (vacuum polarization, Z-boson exchange contributions and so on),
and extending the comparisons also to asymmetric ES’s, leading to the results shown as
an example in Fig. 8. A similar analysis has also been performed for the first time in
situations which are typical at the LEP2 experiments. The conclusion drawn at the end of
all these comparisons is that now the theoretical uncertainty due to uncontrolled O(α2L)
corrections is reduced from 0.15% to 0.10% for the LEP1 situation, and estimated to be
0.20% at LEP2. As far as entry (b), the “missing photonic O(α3L3)” uncertainty, is
concerned, new estimates of the effect have resulted in a more conservative theoretical
error, namely 0.015% to be compared with the old estimate of 0.008%.

As far as all the other entries in Tab. IV are concerned, namely entries (c), the
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“vacuum polarization” uncertainty, (d), the “light pairs” uncertainty, and (e), the “Z-
boson exchange” uncertainty, two of them, (c) and (e), are reduced with respect to the
previous situation thanks to several new fits of the hadronic contribution to the vacuum
polarization, and some additional original work on the Z-boson exchange contribution
done during the workshop. New estimates, both MC and analytical, of the light pairs
contribution, (d), featuring more complete calculations done during the workshop, have
resulted in a more conservative estimate of the pairs effect uncertainty of 0.03%.

In conclusion, the total (physical + technical) theoretical uncertainty on the SABH
cross section for a typical calorimetric detector is at present 0.11% at LEP1 and 0.25%
at LEP2. While the theoretical precision reached in the LEP2 case is sufficient, further
improvements in the LEP1 case are desirable.

2
.
6. Recent Developments and Perspectives. – After the completion of the Working

Group “Event Generators for Bhabha scattering” [18], some additional work, relevant for
a further reduction of the theoretical uncertainty on the SABH cross section, has been
done by the BHLUMI [35–39] and SABSPV [23] groups.
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Fig. 9. – Examples of virtual corrections to single bremsstrahlung in the SABH process (see
ref. [35,37]). Only graphs concerning the real emission by the electron line are shown.

Concerning the BHLUMI group, the exact virtual one-loop corrections to the hard
bremsstrahlung process in the SABH scattering (see Fig. 9) have been computed [35,
37]. These results are needed to complete the exact treatment of the O(α2L) photonic
corrections, since the contributions from double bremsstrahlung [40] and the two-loop
electron form factor [41] are known. None of these corrections is at present implemented
in BHLUMI [35]. It has to be noticed that this is the first exact, completely differential,
result for the virtual one-loop corrections to the hard bremsstrahlung process in the
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SABH scattering. Thanks to this result, the authors are able to estimate the size of the
missing O(α2)L part in BHLUMI, for a realistic NW ALEPH SICAL luminometer, finding
it below 2 × 10−4 of the Born cross section in the massless limit. Work is in progress in
order to generalize the result to the massive case, and in order to compare its effect with
the semi-analytical calculation of the NLLBHA group [30].

Concerning the SABSPV group, the theoretical formulation has been refined in order
to eliminate a phase-space approximation in the O(α2L) sector and the result has been
analytically checked against the available complete O(α2L) results already present in the
literature for an academic ES (namely a BARE ES) in the soft-photon approximation,
both for the annihilation and scattering channels [23]. For the annihilation channel, the
results have been compared in particular with the ones shown in ref. [42], finding that

• the O(α) perturbative result is exactly recovered, by construction;

• all the IR-singular terms, namely the ones containing ln2 ε and ln ε, where ε =
∆E/E, are exactly recovered at the level of O(α2L2

s), O(α2Ls) and O(α2), where
Ls = ln(s/m2);

• the difference between the two results starts at the level of (α/π)2Ls times a con-
stant;

in particular, such a difference reads

δσ

σ0

∣

∣

∣

∣

∣

(α2Ls)

=
(α

π

)2

Ls

[

3ζ(3) − 3

2
ζ(2) +

3

16

]

,(16)

where δσ is the difference between the cross section of [42] and the cross section of
ref. [23]. The difference numerically amounts to a relative deviation of about 1.7× 10−4.
The residual difference is at O(α2) times a constant and is numerically irrelevant. For
the scattering channel, the results have been compared with the ones of ref. [30]. The
results of the comparison are the same as in the annihilation case up to the O(α2Lt)
corrections, namely the difference appears at the level of (α/π)2Lt times a constant and
reads

δσ

σ0

∣

∣

∣

∣

∣

(α2Lt)

= 2
(α

π

)2

Lt

[

3ζ(3) − 3

2
ζ(2) +

3

16

]

,(17)

where δσ is the difference between the cross section of [30] in soft approximation and
the cross section of ref. [23]. This difference numerically amounts to a relative deviation
of about 2.2 × 10−4, since the overall factor of two is compensated by the fact that
Lt ≃ 2/3Ls. In this case, also an additional difference appears, namely at the level of
the IR-sensitive truly O(α2) terms, which reads

δσ

σ0

∣

∣

∣

∣

∣

(α2)

= −
(α

π

)2
[

4 ln2 ε + 8 ln ε
]

,(18)

and is numerically irrelevant for a realistic situation. Therefore, the O(α2L) corrections
taken into account by the method of ref. [23] represent the bulk of the complete set. By
taking now into account that the canonical coefficient of the O(α2L) corrections for a
calorimetric (realistic) ES is one half of the corresponding one for the BARE ES (see
Tab. III), and considering a safety factor of three, the authors of [23] estimate that the



24 G. MONTAGNA, O. NICROSINI and F. PICCININI

Fig. 10. – Comparison of Monte Carlo’s. The relative differences between the codes involved
in the comparison and the cross section by BHLUMI 4.03 taken as a reference cross section are
shown as functions of the cut zmin = E+E−/E2

beam. E+,− are the energies deposited in the
positron and electron clusters, respectively. The details of the clustering algorithms (BARE1
and CALO2) are given in [18]. The c.m. energy is

√
s = 92.3 GeV. For more details see ref. [23].

overall theoretical error of the approach, as far as QED corrections are concerned, is
δσ/σ ≃ 3 × 10−4.

The situation is described in Fig. 10, where two ES’s have been considered, namely
a bare and a calorimetric ES. As can be seen, BHAGEN95 and OLDBIS+LUMLOG, which
do not take into account O(α2L) corrections, differ from BHLUMI, which is taken as the
reference cross section, by about 0.1%. NLLBHA shows differences which are contained
within 0.1%; since the NLLBHA formulae coincide with the SABSPV ones up to the O(α2L)
corrections in the soft-photon region, such differences in the soft-photon region are pre-
sumably due to lack of exponentiation in NLLBHA. BHLUMI and SABSPV differ at most
by 0.025%, consistently with the independent estimates of accuracies provided by their
authors, respectively.

The results shown pave the way to a definite reduction of the theoretical luminosity
error at the level of 0.05%. This is anyway not far from the smallest possible theoretical
error, since the vacuum polarization uncertainty is 0.04% in its own (see Tab. IV).

3. – Z0 Physics

The most important processes at the Z0 resonance are represented by two-fermion
production. In the case in which there are no electrons in the final state, the tree-level
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Feynman diagrams for the s-channel annihilation e+e− → γ, Z → f f̄ (f 6= e) are de-
picted in Fig. 11. In the presence of electrons in the final state, there are additional
t-channel amplitudes, which at large scattering angles are essentially backgrounds to the
dominant s-channel annihilation (see Fig. 2 in Sect. 2). The high degree of precision (at
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f
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Fig. 11. – The tree-level Feynman diagrams for the process e+e− → γ, Z → ff̄ (f 6= e).

the level of 0.1% or better) reached in the measurement of the electroweak parameters at
the Z0 pole requires the inclusion in the theoretical predictions of radiative corrections
beyond the Born approximation, in order to perform a meaningful comparison between
theory and experiment. Radiative corrections to e+e− → γ, Z → f f̄ processes are due
to electroweak and strong forces as described by the Standard Model (SM) of the fun-
damental interactions, based on the gauge group SU(2)⊗U(1)⊗ SU(3). At a difference
from the small-angle Bhabha process, where the calculation of QED radiative corrections
only is enough to reach the aimed 0.1% theoretical precision, the two-fermion produc-
tion in e+e− neutral current processes receives important contributions also from the
electroweak and strong sector of the theory. Therefore, the fine structure of the SM
can be probed by precision physics at LEP/SLC in a highly non trivial way at the level
of quantum loops. The issue of radiative corrections has been studied at length in the
past. For instance, the situation before the starting of LEP operations is reviewed in
refs. [12], [13] and [43]. More recently, in view of the final analysis of LEP1 data, the
theoretical studies have been updated in ref. [14].

In the present section, the basic aspects concerning the theoretical treatment of
radiative corrections in precision calculations for the Z0 resonance are reviewed, through
the analysis of the main ingredients of pure weak, QCD and QED corrections to two-
fermion production amplitudes. It is also discussed how the theoretical formulae are
realized in the form of computational tools used for data analysis. The uncertainties
associated to the theoretical predictions and their impact on the precision calculation of
the Z-boson observables are finally analyzed.

3
.
1. Realistic Observables and Z0 Parameters. – The data published by the LEP

Collaborations and used to extract information on the SM and its possible extensions
refer to two main classes of observables:

• realistic observables;

• the Z0 parameters or pseudo-observables.
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The cross sections σ(s) and the forward-backward asymmetries AFB(s) of the two-
fermion production processes

e+e− → (γ, Z) → f f̄(nγ),(19)

quoted as functions of the centre of mass (c.m.) energy and including real and vir-
tual photonic corrections (i.e. “dressed by QED”) are collectively referred to as realistic
observables. They are defined as

σ = σF + σB,(20)

AFB =
σF − σB

σF + σB
,(21)

where σF,B are the cross sections in the forward and backward hemisphere, respectively,
i.e.

σF = 2π

∫ 1

0

d cos ϑ
dσ

dΩ
, σB = 2π

∫ 0

−1

d cos ϑ
dσ

dΩ
.(22)

In the tree-level approximation, for unpolarized initial- and final-state fermions,
the differential cross section dσ0/dΩ, as obtained from the calculation of the Feynman
diagrams shown in Fig. 11, is given by

dσ0

dΩ
=

dσγ
0

dΩ
+

dσγZ
0

dΩ
+

dσZ
0

dΩ
,(23)

where the γ, γZ and Z contributions read

dσγ
0
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=
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fNc

4s

(

1 + cos2 ϑ
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,

dσγZ
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e
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f
v gf

a cos ϑ
]

.(24)

In eq. (24) the symbols are defined as follows. ϑ is the fermion scattering angle. Gµ is
the muon decay constant, α is the QED coupling constant and MZ is the Z-boson mass.
Qf is the final-state fermion charge, in units of the positron charge. Nc is the colour
factor, Nc = 1, 3 for leptons and quarks respectively. gi

v and gi
a are the tree-level vector

and axial-vector couplings of the ith fermion to the Z0 boson, given by

gi
v = Ii

3 − 2Qi sin2 ϑW , gi
a = Ii

3,(25)

I3
i being the third weak-isospin component of the ith fermion and sin2 ϑW the squared

sine of the weak mixing angle. At last, χ(s) is the resonating factor

χ(s) =
s

(s − M2
Z) + iΓZMZ

,(26)

ΓZ being the total Z-boson width.
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From the explicit expression of the differential cross section given in eqs. (23) and
(24) it is straightforward to derive the expressions for the total cross section and forward-
backward asymmetry. Concerning the total cross section, at

√
s = MZ the Z-boson

contribution can be written in terms of total and partial Z-boson widths (see eq. (31)
below), while the γZ term is exactly vanishing and the γ contribution gives an effect
contained below 1%. As far as the forward-backward asymmetry is concerned, still at√

s = MZ , it takes the form shown in eq. (32) below.
The data presented by the LEP Collaborations for the realistic observables concern

typically two different experimental configurations:

• extrapolated set-up: a cut on the invariant mass of the final-state fermions or on
the invariant mass of the event after initial-state radiation (ISR) alone is imposed;
the data corresponding to this inclusive situation are also said perfect data;

• “realistic” set-up: simple kinematical cuts, such as cuts on the energies or the
invariant mass of the final-state products, angular acceptance and acollinearity
angle of the outgoing fermions, are imposed.

Owing to the critical dependence of the QED corrections on the applied cuts, the
comparison of the theory with the data for both the above set-up necessarily requires the
availability of formulations (and relative computational tools) as complete as possible
in the treatment of QED effects. Moreover, when aiming to fit “realistic” observables,
a special effort must be devoted to the development of compact analytical and semi-
analytical formulae for QED corrections.

The Z0 parameters, or pseudo-observables, are extracted from the measured cross
sections and asymmetries after some deconvolution or unfolding procedure. Basically,
these quantities are determined by the LEP experiments by means of combined fits to
the hadronic and leptonic cross sections and leptonic asymmetries, after corrections for
the effect of ISR. Besides ISR, other radiative corrections or specific uninteresting effects
can be depurated from the measurements in the unfolding procedure. For example,
the deconvoluted forward-backward asymmetry includes the Z-boson exchange only (i.e.
after subtraction of the γ and γZ contributions) and also final-state QED and eventually
QCD corrections are subtracted from the experimental data. For the quantities relative to
the e+e− final state, the t and s-t interference contributions are subtracted as well. More
details about the fitting procedure adopted by the LEP Collaborations for the extraction
of the Z0 parameters are given in Sect. 4. Therefore, the Z0 parameters are secondary
quantities or, in this sense, pseudo-observables. They are anyway of utmost importance
for the precision tests of the SM, since they depend on the details of the internal structure
of the electroweak theory. The Z0 parameters considered in the literature are given in
Tab. V. The effective sine is defined as

4 |Qf | sin2 ϑf
eff = 1 − gf

V

gf
A

,(27)

where Qf is the electric charge of the fermion f in units of the positron charge, gf
V and gf

A

are the effective neutral current vector and axial-vector couplings of the Z0 to a fermion
pair f f̄ , respectively. By definition, the total and partial widths of the Z0 include final-
state QED and QCD radiation. The invisible Z-boson width Γinv, the ratios R and the
hadronic peak cross section are defined as

Γinv = ΓZ − Γe − Γµ − Γτ − Γh,(28)
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Table V. – The most relevant Z0 parameters.

Observable Symbol

hadronic peak cross-section σh

partial leptonic and hadronic widths Γl (l = e, µ, τ ), Γc, Γb

total width ΓZ

hadronic width Γh

invisible width Γinv

ratios Rl, Rb, Rc

forward-backward asymmetries Al
F B, Ab

F B, Ac
F B

polarization asymmetries P τ , P b

left-right asymmetry (SLC) Ae
LR

effective sine sin2 ϑl
eff , sin2 ϑb

eff

Rl =
Γh

Γl
,(29)

Rb,c =
Γb,c

Γh
,(30)

σ0
had = 12π

ΓeΓh

M2
ZΓ2

Z

.(31)

By definition, σ0
had includes only the Z-boson exchange. Forward-backward, left-right

and polarization asymmetries, unlike the widths, are depurated, as said above, of the
effects of QED and QCD corrections and, like σ0

had, refer to pure Z-boson exchange.
This allows to express them as simple combinations of the effective Z0 couplings as
follows:

Af
FB =

3

4
AeAf ,(32)

Ae
LR = Ae,(33)

P f = −Af ,(34)

where

Af =
2gf

V gf
A

(gf
V )2 + (gf

A)2
.(35)

Analogously, the decay width of the Z0 boson into a f f̄ pair is given by the following
expression:

Γf = 4NcΓ0[(gf
V )2Rf

V + (gf
A)2Rf

A],(36)

where Γ0 is given by Γ0 = GµM3
Z/24

√
2π, and Rf

V and Rf
A are factors taking into account

QED and QCD final-state radiation (FSR) and mass effects.

3
.
2. Electroweak Corrections. – The high precision reached in the measurements at

LEP and SLC allows to test the SM at the level of its radiative corrections. This can
be done by virtue of the renormalizability of the theory [44]. The one-loop radiative
corrections to e+e− → f f̄ can be divided into two classes, separately gauge invariant:
the pure QED corrections and the electroweak ones. The former are obtained by adding
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a virtual or real photon line to the lowest order Feynman diagrams, while the latter
consist of all the remaining diagrams at one-loop order. As will be seen in the following
the two classes of corrections are very different in many aspects and therefore different
methods of calculation are required in order to reach the necessary theoretical accuracy.
Contrary to the pure QED corrections, the electroweak corrections amount numerically
to a few percent so that a one-loop approximation is already almost satisfactory. On the
other hand, they depend on the fundamental parameters of the theory, so that particular
attention must be devoted to the inclusion of potentially large higher-order effects in
order to fully exploit the experimental accuracy to get information on the still unknown
parameters. In the present Section the fundamental ingredients of electroweak corrections
are illustrated and discussed.

3
.
2.1. One-loop Feynman diagrams. The calculation of the electroweak corrections

involve the evaluation of diagrams with closed loops, where an integration over the loop
momentum is present which diverges for large momenta (ultraviolet divergences). For
this reason a regularization procedure is needed in order to deal with finite and math-
ematically well defined integrals, before implementing a renormalization program. The
most used method in the case of gauge theories is the dimensional regularization [45–47]
because it allows to maintain Lorentz and gauge invariance at any step of the calculation.
Some details about this procedure are given in Appendix C.

The electroweak one-loop corrections to e+e− → f f̄ can be classified in vector boson
self-energies, fermion self-energies, vertex and box corrections. The fermion self-energies
are commonly accounted as part of the vertex corrections. The vector boson self-energies,
also referred to as oblique corrections, include the following transitions: γ-γ, γ-Z, Z-γ,
Z-Z and W -W .

γ , Z γ , Z

f

f

W W

f

f′

Fig. 12. – One-loop fermionic contributions to vector-boson self-energies.

All the above classes of corrections can be written in terms of general two-, three-
and four-point functions introduced in ref. [48], which in turn can be reduced to certain
combinations of the basic scalar one-, two-, three- and four-point integrals introduced
in ref. [49]. Some simple examples of the procedure are given in Appendix C. The
general expressions of the scalar form factors for arbitrary momentum and masses are
not simple functions of their arguments and have to be computed numerically by means
of the relations given in refs. [48–50].

Within the set of the vector boson self-energies two different kinds of corrections can
be distinguished for their different numerical relevance: the fermion-loop contribution
which is the leading one (see Fig. 12) and the bosonic contribution (see Fig. 13). Being
gauge invariant by themselves, the fermion-loop corrections can be resummed with some
procedure in order to take into account of reducible higher-order effects. The complete
expressions for the vector boson self-energies in terms of two-point functions can be found
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Fig. 13. – One-loop bosonic contributions to vector-boson self-energies.

in refs. [48,50,51]. Here only the fermion contributions are recalled because they deserve
some important comments. The γ-γ transition is given by [50]

Sγ(p2) =
e2

16π2
p2
∑

f

Q2
fNc{8B21(p2, m, m) − 4B0(p2, m, m)},(37)

where B are two-point functions and the sum is extended to all charged fermions. This
expression is the same as obtained in QED, since the SM coupling between photon and
fermions recovers the QED case. The quantity

Πγγ(p2) =
Sγ(p2)

p2
(38)

is known as the photon vacuum polarization. It is interesting to work out the two-point
functions for the following asymptotic cases, for a fermion of given flavour:
• light fermions (|p2| >> m2)
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Πγγ(p2) =
e2

12π2
Q2

f

(

−∆ + ln m2 − 5

3
+ ln

|p2|
m2

− iπ

)

,(39)

• heavy fermions (|p2| << m2)

Πγγ(p2) =
e2

12π2
Q2

f

(

−∆ + ln m2 − p2

5m2

)

.(40)

Apart from the terms ∆− ln m2, which are related to the ultraviolet divergences and are
removed by the renormalization procedure, it is worth noticing the term proportional
to ln(|p2|/m2) in the light fermions limit. At energies of the order of 100 GeV, as is
the case at LEP, this terms is the origin of large corrections coming from the light
fermion spectrum of the theory. While the leptonic contribution can be unambiguously
calculated, the hadronic one is affected by a large uncertainty, because the light-quark
masses can not be unambiguously defined. For this reason the hadronic contribution
to the photon vacuum polarization is calculated by means of a dispersion relation as
described in Appendix B. As far as the top-quark contribution to the vacuum polarization
is concerned, taking into account the top-quark mass value of about 170 ÷ 180 GeV,
the heavy fermion limit of Πγγ can be taken, resulting in a small effect. This happens
because the U(1)e.m. group of the SM is not spontaneously broken so that the decoupling
theorem [52] can be applied.

The combination of two-point form factors present in the fermionic contribution to
the γ-Z transition is the same as the γγ case apart from the couplings. It is at this
point worth noticing that, contrary to the case of the photon self-energy, the bosonic
contribution to the mixed γ-Z transition is not proportional to p2 so that it is different
from zero for p2 = 0.

The massive vector boson self-energies have the following expressions:

S+(p2) =
g2

16π2
Nc

∑

d

[

2 p2{B21(p2, md, mu) + B1(p2, md, mu)}

+ (m2
u − m2

d)B1(p2, md, mu) − m2
dB0(p2, md, mu)

]

,(41)

where g is the SU(2) coupling constant and the sum is extended over the fermionic
doublets;

S0(p2) =
g2

16π2
Nc

∑

f

[

p2 (gf
v )2 + (gf

a )2

4c2
ϑ

{8B21(p2, m, m) − 4B0(p2, m, m)}

− m2

2c2
ϑ

B0(p2, m, m)
]

,(42)

where the sum is extended to all fermions. As before it is interesting to consider the two
limits of light and heavy fermions:
• light fermions

S+(p2) =
g2

12π2

p2

4
Nc(−∆ + ln |p2| − iπ),(43)

S0(p2) =
g2

12π2

(gf
v )2 + (gf

a)2

4c2
ϑ

p2(−∆ + ln |p2| − iπ);(44)
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• heavy fermions

S+(p2) =
g2

12π2
Nc

[

− p2

4
(∆ − ln m2

u) − 3m2
u

8
(∆ − ln m2

u +
1

2
)
]

,(45)

S0(p2) =
g2

12π2
Nc

[

− (gf
v )2 + (gf

a)2

4c2
ϑ

p2 − 3m2
u

8c2
ϑ

]

(∆ − ln m2
u),(46)

where the contribution of a single doublet in the charged vector boson case has been
written. Some comments are in order here. The ultraviolet divergences are associated
only with the real parts of the self-energies, as the imaginary parts are directly related
to the widths of the gauge bosons. Furthermore it appears in the heavy fermions limit a
term proportional to m2

u, that becomes numerically relevant in the case of the top quark.

γ , Z
f′

f′

f

f

W, Z
γ , Z

W

W

f

f

f′

γ , Z
f′

f

f

W, Z
γ , Z

f′

f

f

W, Z

Fig. 14. – One-loop vertex corrections.

As far as the vertex corrections are concerned (see Fig. 14), neglecting the external
fermion masses only two combinations of three-point functions C(p2, mf , MV , mf ) are
present in the calculations [48, 51]:

CV
ff (p2) = − 2C24(p2, mf , MV , mf ) −

[

C11(p2, mf , MV , mf )

+ C23(p2, mf , Mv, mf )
]

p2 + 1,(47)

when only one gauge boson is present in the loop, and

CV V
f (p2) = 6 C24(p2, MV , mf , MV ) +

[

C0(p2, MV , mf , MV )

+ C11(p2, MV , mf , MV ) + C23(p2, MV , mf , MV )
]

p2 − 1,(48)
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when two gauge bosons circulate in the loop. In the case of the bb̄ final state, due to
the effect of internal top-quark lines, five different combinations of three-point functions
are needed, whose explicit expression can be found in [51]. As for the massive vector
boson self-energies, terms of order m2

t originate from the vertex corrections to the bb̄ final
state [53]. In order to complete the vertex corrections, the wave function factors of the
external fermions have to be added, which can be obtained from the fermion self-energy
diagrams [50].

Last, the contribution of box diagrams for the process e+e− → f f̄ (see Fig. 15) can
be written in terms of two combinations of four-point functions. They are ultraviolet
finite, apart from the unitary gauge, and since they are not resonating at the Z0 peak,
their effect is numerically very small, so that generally they are neglected for LEP1
physics, although their inclusion is necessary for the gauge invariance of the calculation.
As will be discussed in Sect. 5

.
1.1, the box corrections become relevant far away from

the Z0 peak.

e-

e+

W, Z f

fW, Z

e-

e+

Z
f

f
Z

Fig. 15. – One-loop box corrections.

It is worth noticing that, from the point of view of the determination of unknown
SM parameters, the bosonic corrections involving the insertion of internal Higgs-boson
lines are particularly interesting, since they introduce a dependence of the theoretical
predictions on the unknown Higgs-boson mass mH .

3
.
2.2. Calculational schemes. The tree-level Lagrangian of the SM contains in its

electroweak part a certain number of free parameters which need to be fixed by compari-
son with experimental data. The choice of the lagrangian parameters and their relations
with a set of experimental data is the content of a renormalization scheme.

The gauge sector of the minimal SM is characterized by three free parameters fixed
by three input data points, which have to be known with high experimental accuracy,
as they are the input for precision calculations. At present the three most precise ex-
perimental quantities are the fine structure constant α, measured by means of one the
methods quoted in Appendix B, the muon decay constant Gµ, measured through the
muon lifetime, and the Z-boson mass measured at LEP1. Their precision makes them
the most widely used experimental input data for the calculation of radiative correc-
tions. Having defined the parameters, the calculation of any other physical quantity can
be used as a test of the theory by direct comparison of the theoretical prediction for the
observable with its experimental value.

The relations between the lagrangian parameters and the measurable quantities de-
pend on the order at which perturbation theory is carried on. In particular, going beyond
the tree-level approximation, the situation is complicated by the appearance of ultraviolet
divergences which make the differences between the tree-level parameters and the radia-
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tively corrected ones infinitely large. Because of this, a commonly adopted procedure
is the introduction of counter-terms: each bare parameter is split into the renormalized
parameter and a counter-term which absorbs the ultraviolet divergences plus finite terms.
The values of this finite parts depend on the renormalization prescriptions. Due to the
renormalization group invariance, all renormalization schemes are equivalent. However,
since the radiative corrections are obtained from a finite order perturbative expansion
(eventually supplemented by resummation to all orders of some class of gauge invariant
contributions), the predictions for physical quantities are scheme dependent. The differ-
ences between two calculations, performed at a fixed perturbative order in two different
schemes, appear in higher-order terms. This fact allows to estimate the size of missing
higher-order effects by comparing the results obtained with calculations based on different
renormalization schemes (see Sect. 3

.
6). Given the high precision of the experiments at

the Z0 peak, it is very important to keep under control these higher-order effects. In the
literature several schemes have been adopted for the calculation of radiative corrections.
With the exception of the low energy scheme [50,54–56], which has been used before the
advent of LEP, it is worth mentioning the following calculational schemes adopted for
various formulations of radiative corrections to observables at the Z0 resonance:

• the on-shell scheme [57];

• the MS scheme [58];

• the Gµ scheme [59];

• the * scheme [60].

In the following a brief review of the various schemes is given.
The basic idea of the on-shell scheme is the observation that Thomson scattering and

the particle masses set natural scales where the parameters e, MZ , MW , mH and mf can
be defined. The finite parts of the mass counter-terms are fixed by the renormalization
conditions that the particle propagators have poles at their physical masses. In the case
of unstable particles like the W± and Z0 bosons the mass is not uniquely defined. For
LEP1 physics the vector boson mass is commonly defined as the zero of the real part
of the inverse propagator. At one-loop order, after a Dyson resummation of the self-
energy diagrams and neglecting external fermion masses, the propagator is given by the
expression

1

p2 + M0
V

2 − SV (p2)
,(49)

where the Lorentz structure has been neglected for simplicity and M0
V is the bare mass.

In the case of the Z-boson propagator, due to γZ mixing eq. (49) is modified by reducible
higher-order terms, which for simplicity are not considered here. Introducing the mass
counter-term means the following relation between the bare mass M0

V and the physical
mass MV :

M0
V

2
= M2

V + δM2
V .(50)

Inserting the above expression for the bare mass in the propagator of eq. (49), the ex-
pression of the counter-term can be easily identified as

δM2
V = ReSV (M2

V ).(51)
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The charge counter-term is fixed by the condition that e equals the eeγ coupling con-
stant in the Thomson limit of Compton scattering. At one-loop order, the eeγ coupling
receives contributions only from the photon self-energy and the mixed γ-Z transition,
because the corrections related to the external particles cancel each other as a conse-
quence of a generalization of the QED Ward identity. The expression for the charge
counter-term reads

δe

e
=

1

2
Πγγ(0) − sW

cW

ΣγZ(0)

M2
Z

,(52)

where sW and cW are the sine and cosine of the weak mixing angle defined in the SM by

sin2 ϑW = 1 − M2
W

M2
Z

.(53)

According to ref. [61], the above definition of sin2 ϑW is assumed to be valid to all orders
of perturbation theory.

As a matter of fact, the precision of the W -boson mass measurement is not adequate
for precision physics at the Z0 resonance. For this reason the input W -boson mass is
replaced by the more accurate value of Gµ obtained from the µ-lifetime τµ:

1

τµ
=

G2
µm5

µ

192π3

(

1 − 8m2
e

m2
µ

)[

1 +
α

2π

(

1 +
2α

3π
ln

mµ

me

)(

25

4
− π2

)]

.(54)

This equation, obtained within the effective four-fermion Fermi interaction with the
inclusion of QED radiative corrections up to O(α2), is used as the definition of Gµ in
terms of the experimental µ lifetime. Calculating the last one within the SM at one-loop
order, the following relation can be established between Gµ and MW :

Gµ√
2

=
e2

8s2
W M2

W

(1 + ∆r),(55)

where ∆r is a ultraviolet finite combination of counter-terms and loop diagrams. Since
∆r is a function of e, MW , MZ , mH and mt, eq. (55) can be solved iteratively for MW .
By inspection of the various contributions, ∆r can be written in the following form:

∆r = ∆α − c2
W

s2
W

∆ρ + (∆r)rem,(56)

where ∆α is the fermionic contribution to the photonic vacuum polarization, and ∆ρ is
the following ultraviolet finite combination [62, 63]:

∆ρ =
ΣZ(0)

M2
Z

− ΣW (0)

M2
W

,(57)

which is quadratic in the top-quark mass

∆ρ = Nc
Gµm2

t

8π2
√

2
.(58)

∆ρ is the corrections to the ρ parameter, defined as ρ = M2
W /M2

Z cos2 ϑW , which is equal
to one in the minimal SM at the tree level [62–64]. (∆r)rem takes into account non-
leading corrections, among which the most interesting ones, from the phenomenological
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point of view, are due to Higgs-boson loops, yielding as leading contribution the following
asymptotic logarithmic term (mH ≫ MW ) [65–67]

(∆r)Higgs
rem ≃

√
2GµM2

W

16π2

{

11

3

(

ln
m2

H

M2
W

− 5

6

)}

,(59)

and to top-quark loops, yielding a logarithmic term given by

(∆r)top
rem =

√
2GµM2

W

16π2
2

(

c2
W

s2
W

− 1

3

)

ln
m2

t

M2
W

+ . . .(60)

At the one-loop order, no quadratic Higgs-boson mass corrections appear as a conse-
quence of the so-called custodial symmetry of the Higgs-boson sector of the minimal
SM.

Due to the presence of large contributions to ∆r of the kind α ln(MZ/mf), these
terms are resummed to all orders by writing eq. (55) in the following form [68]:

Gµ√
2

=
e2

8s2
W M2

W (1 − ∆r)
.(61)

This form takes into account to a good approximation also the terms of the order of
α2 ln(mf/MZ) [68]. More details on higher-order terms are given in Sect. 3

.
2.4.

The method outlined above of parameter renormalization is sufficient to obtain finite
S-matrix elements. However propagators and vertices by themselves are not finite. To
this aim also field renormalization has to be carried out. This allows to fulfill further
renormalization conditions, in particular the vanishing of the mixed γ-Z transition for
real photons. The different ways of implementing field renormalization and the different
gauges in which the calculations are performed are the main differences among the various
realizations of the on-shell scheme present in the literature.

In the MS scheme, the counter-terms are defined only through the divergent parts
proportional to ∆ − ln m2 of the radiative corrections to the bare parameters, as these
are fixed only by the bare Lagrangian, and do not depend on particular renormalization
conditions as is the case for the on-shell scheme. The MS expressions of the parameters
can be directly obtained replacing the bare parameters with the MS ones, and replacing
at the same time the quantity ∆ in the radiative corrections to the bare parameters with
ln µ2, µ being the renormalization scale. In so doing, the MS parameters depend on the
arbitrary scale µ, which can be naturally chosen to be MZ for electroweak calculations.
The MS electroweak mixing angle can be defined as

ŝ2 = 1 − M̂2
W

M̂2
Z

,(62)

where M̂W,Z are the MS vector boson masses.
According to refs. [69] and [70], a way to link directly ŝ2 to the experimental inputs

α, Gµ, and MZ is to calculate the radiative corrections to µ decay within the MS
framework introducing the correction ∆r̂W together with a generalized relation between
the W - and Z-boson physical masses:

ŝ2(1 − ∆r̂W ) =
πα√

2GµM2
Z

,(63)

M2
W = ĉ2ρ̂M2

Z ,(64)
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where ρ̂−1 = 1 − ∆ρ̂ .
Within the MS scheme the relation giving the MW -MZ interdependence can be

expressed as

M2
W

M2
Z

=
ρ̂

2

{

1 +

[

1 − 4A2

M2
Z ρ̂(1 − ∆r̂W )

]
1
2

}

,(65)

with A =
(

πα/
√

2Gµ

)
1
2 .

The advantage of adopting the MS scheme is twofold [71]. First, this calculational
framework leads to effective couplings which absorb the largest part of the top-quark
and Higgs-boson mass dependence of the radiative corrections. Secondly, the knowledge
of the gauge coupling constants at the Z-boson mass can be naturally extrapolated to
higher energies in order to test scenarios of Grand Unification.

The idea of the Gµ scheme is to directly relate the bare parameters to the input
data α, Gµ and MZ . This can be realized according to different methods, for example
by assuming on-shell parameters [72] or MS parameters [51,73]. Here a brief account of
the second realization is given, where the bare parameters are chosen to be the SU(2)
coupling constant g, the W -boson mass MW and the squared sine of the weak mixing
angle s2

ϑ. Starting from the observation that there is no one to one correspondence
between lagrangian parameters and experimental data, in this scheme no attempt is
made to define renormalized parameters (in particular s2

ϑ) beyond lowest order. A set
of three fitting equations [51,63] for the bare parameters is introduced, corresponding to
the definition of α from Thomson scattering, Gµ from the µ lifetime and MZ from the
zero of the real part of the inverse Z0 propagator:

dexp
i = dth

i (g, MW , sϑ, ∆), (i = 1, 2, 3).(66)

In eq. (66), dth
i are the theoretical expressions of α, Gµ and MZ in terms of g, MW , s2

ϑ and
∆, whereas dexp

i are the corresponding experimental values. The equations can be solved
to first order in perturbation theory with respect to the bare parameters which contain
ultraviolet divergences represented by the quantity ∆. They can be properly modified
to account for resummation of relevant gauge invariant higher-order effects [51]. In the
calculation of any physical quantity by means of one-loop diagrams calculated with tree-
level parameters and tree diagrams calculated with up to one-loop order parameters the
ultraviolet divergences cancel. This procedure is suitable for an order by order numerical
renormalization. In the numerical calculation, the quantity ∆ enters as an arbitrary
parameter which can assume any numerical value without changing the final result.

The condition ΣZγ = 0 is fulfilled through a proper redefinition of the bare cou-
pling g0, which automatically guaranties that the sum of all Zff̄ vertices is ultraviolet
finite [51].

It is worth noticing that in the Gµ scheme the W -boson mass plays the same rôle as
any other physical observable, contrary to the on-shell scheme where at the same time
it appears as a prediction and as an intermediate parameter for the calculation of other
observables.

In the ∗ scheme, an effective lagrangian to one loop is introduced, and the universal
effects of oblique corrections resummed to all orders are absorbed in the following three
running parameters (free of ultraviolet divergences): e2

∗(q2), s2
∗(q2) and G2

µ∗(q2). The
values of these three starred functions have to be fixed at a certain set of q2’s and then
can be calculated at any other scale by means of a set of evolution equation. The choice
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of ref. [74] is to fix e2
∗ and G2

µ∗ at q2 = 0 by means of α and Gµ, and s2
∗ at the Z-boson

mass scale by means of the pole of the Z0 propagator. In order to cure the problem
ΣγZ(0) 6= 0 in the bosonic sector, a rediagonalization of the neutral current sector in the
one-loop lagrangian is performed including in the self-energies the contribution of the
universal and gauge dependent parts of the vertex corrections.

Besides the calculational schemes described above, one should also mention the Z-
peak subtracted representation of e+e− → f f̄ processes at one loop, recently suggested
in [75]. In this approach, the input parameter Gµ is replaced by quantities measured on
top of the Z0 resonance. For instance, for leptonic final states the new input parameters
are the leptonic Z-boson width Γl and the effective sine sin2 ϑl

eff , that reabsorb the
bulk of loop effects, while the residual one-loop corrections are contained in quantities
subtracted at Q2 = M2

Z . This approach has been proved to be particularly powerful for
the description of e+e− annihilations above the Z0 peak, especially if an investigation of
models of new physics is the final goal.

3
.
2.3. Transition amplitudes and effective couplings. The basic ingredients of loop

calculations described in the previous subsections can be used to evaluate transition
amplitudes for the physical process e+e− → f f̄ . Before discussing the radiative corrected
amplitude, it is worth recalling the general structure of the tree-level amplitude which,
excluding for simplicity the case of Bhabha scattering, reads [76]:

M ∼ 1

s

[

QeQfγα ⊗ γα + χγα(ge
v − ge

aγ5) ⊗ γα(gf
v − gf

aγ5))
]

,(67)

where χ is the propagator ratio

χ =
s

s − M2
Z + iΓZ(s)MZ

,(68)

and the symbol Γα ⊗ Γα means product of spinorial currents. The s-dependent width
ΓZ(s) ≃ sΓZ/M2

Z appearing in eq. (68) is due to the imaginary part of the Z self energy.
In eq. (67), the photon and the Z-boson exchange diagrams are well separated and
moreover the Z0 contribution is written in a factorized form. By virtue of these two
properties, simple relations between the pseudo-observables defined in Sect. 3

.
1 and the

measured quantities can be established.
However the two features are lost when the electroweak non-photonic corrections

(self-energy diagrams, Zff̄ vertex insertions and weak boxes) are considered. In this
case the matrix element can be written in the following way:

M ∼ 1

s

[

α(s)γα ⊗ γα + χ
(

F ef
vv (s, t)γα ⊗ γα − F ef

va (s, t)γα ⊗ γαγ5

− F ef
av (s, t)γαγ5 ⊗ γα + F ef

aa (s, t)γαγ5 ⊗ γαγ5

)]

,(69)

where α(s) is the QED running coupling constant with only fermionic contributions (in

order to have a gauge invariant term) and the form factors F ef
ij are complex valued

functions of the input parameters and of the kinematical variables s and t. Usually the
self-energies contributions are resummed in their fermionic component to take into ac-
count large higher-order reducible diagrams. The bosonic parts are instead expanded at
O(α), in order to preserve gauge invariance. The dependence of the form factors on t
is only due to the presence of box diagrams. Being non-resonant at the Z0 peak, their
numerical effects are very small and can be neglected, even if from a theoretical point
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of view the gauge invariance is no more respected. Other non-resonating contributions,
such as the bosonic insertions to the photon propagator and photon-fermion vertex cor-
rections, can be safely neglected. Another commonly used approximation is the Z0 pole
approximation, which means to fix the scale in the form factors at the value M2

Z , since
the weak corrections depend very mildly on the scale around the Z0 peak. After these
approximations the factorization of the Z0 contribution is re-established and the form
factors take on the form:

F ef
ij (M2

Z) = Ge
i (M2

Z)Gf
j (M2

Z).(70)

This means that the Z-boson part of the corrected amplitude can be obtained from the
tree-level expression by replacing the vector and axial vector couplings with the corrected
versions defined above by eq. (70). The imaginary parts of the couplings Gf

i (M2
Z) are

generally small with respect to the real parts, so that the following effective couplings
are commonly introduced:

gf
V,A = ReGf

v,a(M2
Z).(71)

As already noticed in Sect. 3
.
1, the decay width of the Z0 boson into a f f̄ pair is

given by the following expression in terms of the effective couplings:

Γf = 4NcΓ0[(gf
V )2Rf

V + (gf
A)2Rf

A].(72)

In the literature other sets of parameters replacing the effective couplings are present.
For example according to ref. [66] the parameters ρf and kf are introduced related to

gf
V and gf

A by the following relations:

ρf = 4(gf
A)2(73)

gf
V

gf
A

= 1 − 4|Qf |s2
W kf ,(74)

with

ρf = 1 + δρf ,(75)

kf = 1 + δkf .(76)

By means of these parameters, the Z0 partial widths can be written in the following way
(neglecting for simplicity final-state QED and QCD interactions and mass effects):

Γf = Γ0N
f
c ρf [4(I3

f − 2Qfs2
W kf )2 + 1].(77)

The above described procedure of step-by-step approximations, leading from the exact
one-loop amplitude to an approximate amplitude formally identical, or very similar, to
the Born-approximation one, but written in terms of form factors evaluated at the Z0

peak, is known as Improved Born Approximation (IBA). Some different realizations of
IBA’s are available in the literature, and can be found for instance in [66, 77, 78].

3
.
2.4. Higher-order electroweak corrections. Given the high precision reached in

the experimental measurements, particular attention must be paid to include in the
electroweak corrections potentially large higher-order effects. These generally originate
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from terms containing logarithms of the type ln(MZ/mf), where mf stand for a generic
fermion mass, or from contributions proportional to the top-quark mass. In Sect. 3

.
2.2

the prescription based on renormalization group arguments [68, 79]

1 + ∆r → 1

1 − ∆r
(78)

has been introduced to include to all orders the leading logarithms of O(αn lnn(MZ/mf )),
contained in ∆α of eq. (55), giving the interdependence between MW , MZ and Gµ.
However, with this prescription the powers (∆ρ)n are not correctly resummed. In ref. [80]
it has been shown how to take into account in the on-shell scheme the leading two-loop
contributions proportional to m4

t by means of the replacement

1

1 − ∆r
→ 1

1 − ∆α
· 1

1 +
c2

W

s2
W

∆ρ̄
+ ∆rrem,(79)

where ∆ρ̄ includes the contribution of two-loop one particle irreducible diagrams:

∆ρ̄ = 3xt

[

1 + xtρ
(2)

(

mH

mt

)]

, xt =
Gµm2

t

8π2
√

2
.(80)

The two-loop correction ρ(2) was first calculated in ref. [81] in the limit of light Higgs-
boson mass mH << mt, yielding ρ(2) = 19 − 2π2. More recently the calculation has
been carried out by several groups [82–84] for arbitrary values of the ratio mH/mt in
the limit of vanishing gauge coupling constants. In ref. [68] it has been shown that the
fermionic mass singularities of O(α2 ln(MZ/mf)) are correctly taken into account by
keeping ∆rrem in the denominator, i.e.

1

1 − ∆r
→ 1

(1 − ∆α)
(

1 +
c2

W

s2
W

∆ρ̄
)

− ∆rrem

.(81)

The effects of two-loop heavy Higgs-boson contributions have been investigated in
refs. [85] and [86].

Very recently the two-loop sub-leading corrections of O(α2m2
t /M

2
W ) have been cal-

culated for the vector-boson masses correlation [87–89], and found to be potentially of
the order of the leading m4

t contributions, depending on the Higgs-boson mass. More-
over, the exact two-loop Higgs-boson mass dependence has also become available [90],
introducing a shift in the W -boson mass contained within 4 MeV [91] with respect to
the calculation of ref. [88, 89].

Another place where higher-order electroweak effects play an important rôle is the
partial width Z → f f̄ . The effective couplings contain leading universal parts, arising
from self-energies and counter-terms, and flavour-dependent parts coming from vertex
corrections. The leading universal contributions are given by [76]

(δρf )univ = ∆ρ + . . . ,(82)

(δkf )univ =
c2
W

s2
W

∆ρ + . . . .(83)

The higher-order terms can be incorporated by means of the following replacements:

ρf → 1

1 − ∆ρ̄
+ . . .(84)

kf → 1 +
c2
W

s2
W

∆ρ̄ + . . . ,(85)
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with ∆ρ̄ given by eq. (80).
The partial decay width Z → bb̄ contains an additional mt dependence due to vertex

diagrams with virtual top-quark lines, resulting in additional leading terms of the order
Gµm2

t for the effective couplings ρb and kb. The additional leading two-loop electroweak
effects of the order G2

µm4
t have been computed in refs. [82] and [83], and amount to the

following redefinition of the effective couplings:

ρb → ρb(1 + τb)2,(86)

kb → kb

1 + τb
,(87)

where τb is given by

τb = −2xt

[

1 + xtτ
2

(

m2
t

m2
H

)]

,(88)

where τ2(m2
t /m2

H) can be found in [82, 83].
At the level of two-loop or higher-order corrections, other phenomenologically rele-

vant contributions come from the mixed electroweak-QCD corrections, discussed in the
next Section.

3
.
3. QCD Corrections. – QCD corrections play a significant rôle as higher-order

corrections due to virtual gluon insertions in electroweak loops (mixed electroweak-QCD
corrections) and as final-state corrections in the hadronic decay channels. With the
exception of very recent improvements, an account of perturbative QCD calculations for
the Z-boson observables can be found in [14] and [92].

3
.
3.1. Mixed electroweak-QCD corrections. The need of very accurate predictions

demanded by the high precision of the measurements on the Z0 peak, motivated various
authors to perform calculations of higher-order effects beyond the one-loop and higher-
order electroweak corrections already discussed in Sect. 3

.
2. Great effort was spent in

the calculation of corrections due to the insertion of virtual gluons in the electroweak
quark loops, known as mixed electroweak-QCD corrections, giving rise to contributions
simultaneously depending on the weak coupling Gµ and the coupling of the strong inter-
action αs. Higher-order corrections of this kind have been calculated both for W - and
Z-boson self-energies, thus affecting all Z → f f̄ decay channels, and specifically for the
peculiar Z → bb̄ vertex.

QCD corrections to the gauge-bosons self-energies have been computed in the SM
considering the insertion of one and two gluons into the internal quark loops. Typical
Feynman diagrams contributing to these corrections are depicted in Fig. 16.

Fig. 16. – Example of Feynman diagrams for QCD corrections to gauge-bosons self-energies.

The diagrams involving the exchange of a single gluon, described for instance by the
first graph in Fig. 16, give rise to two-loop corrections of the order of ααs, that are now
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exactly known [93] and are dominated by terms of order Gµαsm
2
t . The insertion of two

virtual gluons, of the kind depicted in the second graph of Fig. 16, generates a three-loop
contribution of the order of αα2

s, that is partially under control and introduces effects
of the form Gµα2

sm
2
t [94]. In formulae, the effect of such corrections to the ∆ρ factor

introduced in Sect. 3
.
2 can be cast, in the heavy top-quark limit, as follows

∆ρ → ∆ρ · (1 + δρQCD)(89)

where δρQCD is the QCD correction to the leading Gµm2
t term

δρQCD = −2.86as − 14.6a2
s, as =

αs(mt)

π
,(90)

the running coupling constant αs being evaluated at the energy scale given by the top-
quark mass. It is worth noticing that the QCD correction to the ρ parameter is negative,
and tends to screen the electroweak contribution.(2)

A second source of higher-order mixed effects comes from QCD corrections to the
Z → bb̄ electroweak vertex once corrected by the one-loop contributions depicted in
Fig. 14 (see Sect. 3

.
2). Due to the presence of virtual top-quark lines in the one-loop bb̄

vertex, significant non-universal mixed corrections, depending on αs and mt, are addition-
ally present for the bb̄ final state. The effects induced by O(αs) gluon radiation introduce
two-loop corrections to the leading electroweak term of the order of Gµαsm

2
t [96] and to

the ln(mt/MW ) term of the order of Gµαs ln(mt/MW ), the latter with a very small nu-
merical coefficient [97]. The missing next-to-leading corrections of O(ααs) to the partial
width Γb have been very recently calculated [98], thus improving the SM prediction for
the Z → bb̄ vertex.

Finally, final-state mixed corrections to the Z → qq̄ decay channels, due to the in-
terplay between QED and QCD radiation off final-state quarks, are exactly available [99]
and taken into account in the theoretical predictions. For example, the Z0 decay width
into qq̄ final states receives a contribution from these mixed corrections given by the
factor

δfs
ααs

= Q2
f

3

4

α(s)

π

[

1 − 1

3

αs(s)

π

]

with s = M2
Z ,(91)

that can be easily deduced from the QCD results for the Z → qq̄ decay width, discussed
in the next Section.

3
.
3.2. Final-state QCD corrections. In addition to the classes of radiative corrections

discussed in the two previous Sections, an adequate theoretical description of the pro-
cesses explored at LEP requires, as a further basic ingredient, the inclusion of the QCD
corrections to the Z → qq̄ decay channels, arising from the emission of real and virtual
gluons off the final-state quarks (see Fig. 17). Among the observables measured at the
Z0 peak, these corrections affect the total hadronic cross section σhad, the FB asymmetry
of heavy-quark (q = c, b) production Ac,b

FB, as well as the total hadronic width Γh and
the partial widths into c and b quarks Γc,b. When discussing final-state QCD effects
in hadronic Z-boson decays, it is necessary to distinguish between corrections to the
production of light, or massless, quarks and corrections to the heavy-quark production.

(2) The SUSY-QCD corrections to ∆ρ have been recently computed; they could introduce a shift of the
order of 10 MeV on the W -boson mass [95].
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Fig. 17. – Feynman diagrams for final-state O(αs) QCD corrections.

In the case of light quarks (q = u, d, s) with mq ≃ 0, the QCD final-state correction
to the cross section (or, equivalently, to the partial decay width) is completely known up
to O(α3

s). This high perturbative accuracy is of course of the utmost importance in view
of a precise determination of the strong coupling constant in Z-boson decays, as it will
be shown in the following. The result for the Z0 partial widths into massless quarks can
be written as

Γ = Γ0

[

(gf
V )2 + (gf

A)2
]

KQCD(92)

with

Γ0 = Nf
C

GµM3
Z

√
2

12π
(Nf

C = colour factor) ,(93)

gf
V and gf

A being the effective electroweak couplings. KQCD is the up to three-loop
correction factor for massless quarks given by [100,101]

KQCD = 1 +
αs

π
+ 1.41

(αs

π

)2

− 12.8
(αs

π

)3

.(94)

Actually, leading and next-to-leading second-order top-quark mass corrections to the qq̄
decay width in the massless limit are also available in the literature [102] and are taken
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into account in the more refined (but too lengthy to be shown here) QCD radiation
factors usually implemented in standard computational tools for LEP1 physics. The
complete expressions, together with a discussion of the numerical effects of the various
contributions, can be found in the recent review paper of ref. [92].

For massive quarks the situation is different, due to the presence of finite mass
terms. In such a case, the vector and axial-vector contribution to the Z-boson decay
width receive different corrections, known at different perturbative orders. Actually, the
calculation of the axial-vector part of the hadronic Z-boson decay rate is more involved
than that of the vector part. This is because the heavy quark does not decouple in the
axial-vector part and hence one cannot avoid calculating massive diagrams. In particu-
lar, the bb̄ final state receives peculiar contributions from top-quark dependent two-loop
diagrams in the axial-vector part. Consequently, the formula of eq. (92) in the massless
limit needs to be integrated with additional correction factors for massive quarks, of the
form

Γ = Γ0

[

(gc,b
V )2 RV + (gc,b

A )2RA

]

.(95)

The coefficients in the perturbative expansions

RV = c1
V

αs

π
+ c2

V

(αs

π

)2

+ c3
V

(αs

π

)3

+ . . . ,(96)

RA = c1
A

αs

π
+ c2

A

(αs

π

)2

+ . . . ,(97)

depending on the heavy-quark masses and mt, are calculated up to third order in the
vector part and up to second order in the axial-vector part [92, 103–105]. Given the
above formulae for the quark partial widths in the massless limit and massive case,
the total hadronic width and cross section can be obtained as the sum over the partial
contributions of each qq̄ channel.

Recently, the non-factorizable part of the two-loop O(ααs) correction to the hadronic
Z-boson width has been calculated, introducing an extra negative contribution of about
−0.6 MeV [106].

Concerning the forward-backward asymmetry for heavy quarks, the QCD corrections
to AFB are available in the literature [107]. At the order αs, they yield a correction of
the kind

AFB → AFB

(

1 − k
αs

π

)

(98)

where k depends on the mass of the heavy quark, and its explicit expression can be found
in [108].

Last, a few comments are in order. First, since the above QCD factors depend on
the perturbative expansion parameter αs and the latter depends on the energy scale
according to the renormalization group equation for the β function, a formula for the
running of αs needs to be specified. Indicating with µ the renormalization scale and

with nf the number of active quark flavours of mass mq ≪ µ, the solution for α
(nf )
s (µ)

typically used reads [92, 104]

αs(µ) =
π

β0L

{

1 − 1

β0L

β1 ln L

β0
+

1

β2
0L2

[

β2
1

β2
0

(

ln2 L − ln L − 1
)

+
β2

β0

]}

,(99)
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with

β0 =

(

11 − 2

3
nf

)

/4 , β1 =

(

102 − 38

3
nf

)

/16 ,

β2 =

(

2857

2
− 5033

18
nf +

325

54
n2

f

)

/64 .(100)

In the above formulae L = ln(µ2/Λ2
MS

). Actually eq. (99), together with the coefficients

of eq. (100), is valid in the modified minimal subtraction (MS) scheme and corresponds
to the three-loop expansion of the QCD β function. It is used with nf = 5 for the num-
ber of active flavours and it is technically called next-next-to-leading solution of αs(µ).
At present, also the four-loop coefficient in the MS scheme is available [109], thanks
to the recent calculation of the coefficient β3 of the QCD β function [110]. A second
comment concerns the mass correction terms entering the QCD factors for heavy-quarks.
Analogously to the coupling constant, the quark masses are running parameters in QCD
and obey the renormalization group equation controlled by the anomalous dimension
γm, that is known up to three-loop accuracy. The masses appearing in the formulae for
c- and b-quark production have thus to be understood as running (µ dependent) quark
masses. The relations used to account for such effect read as follows [14]:

m(µ) = m(m2) exp

{

−
∫ αs(µ)

αs(m2)

dx
γm(x)

β(x)

}

,

mq = mq(m2
q)

{

1 +
4

3

αs(mq)

π
+ Kq

α2
s(mq)

π
+ O(α3

s)

}

,(101)

where mq is the so-called pole mass (defined in quantum field theory as the position of pole
of a renormalized quark propagator), mq is the MS running mass and Kc,b = 13.3, 12.4.
Notice that the running mass depends on αs. Using, for instance, for the b-quark pole
mass mb = (4.7 ± 0.2) GeV and αs(MZ) = 0.12, one obtains a running mass at the Z0

peak of mb(MZ) ≃ 2.8 GeV, leaving non-negligible mass effects. The running c-quark
mass mc is about a factor of five smaller than mb, thus making c-quark mass corrections
almost invisible in the Z-boson decays [92].

Before turning to QED corrections, it is worth quantifying the effect of the elec-
troweak and QCD corrections discussed up to now. To this aim, Fig. 18 shows the
comparison between the total cross section and the forward-backward asymmetry for the
process e+e− → µ+µ− at the tree level (dashed line) and the full prediction including all
the one-loop and the relevant higher-order electroweak and QCD corrections (solid line).
In Fig. 19 relative deviations for the cross section and absolute deviations for the asym-
metry are shown. The dotted lines represent the difference between strictly tree-level
predictions and “tree-level like” results, obtained by running the QED coupling constant
(and hence sin2 ϑW ) and including final-state QED and QCD corrections in the total
Z-boson width in the propagator. The dashed lines represent the deviations of the last
prediction from a full electroweak/QCD calculation. The full electroweak/QCD results
have been produced by means of TOPAZ0 in its default mode, neglecting theoretical un-
certainties (see Sect. 3

.
6). As can be seen from the figures, the bulk of the corrections is

due to the running of the QED coupling constant and to final-state QCD corrections to
the Z-boson width. However, there is an effect of 0.5 ÷ 1% on the cross section and up
to 0.002 on the asymmetry due to non-trivial corrections as computed by means of a full
electroweak/QCD calculation.
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Fig. 18. – Comparison between the cross section and the forward-backward asymmetry for
e+e− → µ+µ−, as computed in the Born approximation (dashed line) and including all the
one-loop and the relevant higher-order electroweak and QCD corrections (solid line). Numerical
results for this last case by TOPAZ0 [111].

3
.
4. QED Corrections. – As already said in Sect. 2

.
3, QED corrections originate from

those diagrams with extra real and/or virtual photons added to the tree-level graphs (see
Figs. 22, 23 and 24 below). Although these corrections are not particularly interesting
with respect to the underlying theory, they need a special attention at LEP, as at any
other e+e− collider, because the size of their effects strongly depends on the experimental
cuts, and therefore their proper treatment constitutes the unavoidable link between the
data taking and the physics analysis [43]. In fact, they are large corrections at high
energies because, as already explained in Sect. 2

.
3, they are dominated by logarithmic

contributions of the kind (α/π)L, L = ln(s/m2
e) being the so-called collinear logarithm.

At LEP1, where s ≃ M2
Z , L is of the order of 25, and the effective expansion parameter

in perturbation theory is β = 2α(L − 1)/π ≃ 0.1 rather than α. The Breit-Wigner
line-shape of the Z0 resonance in Born approximation is sensibly modified by the QED
corrections for the following typical effects [112,113]:

• the peak height is lowered by around 25%;

• the peak position is shifted towards higher energies by around 100 MeV;

• a hard radiative tail, that increases the lowest-order cross section, appears above,
say, 93 GeV.

The significant distortion introduced by the QED corrections on the Z0 line-shape
of the process e+e− → hadrons can be clearly seen in Fig. 20.

Also the forward-backward asymmetry, AFB , which crosses the zero in the proximity
of MZ , is significantly affected by the QED corrections, that shift the position of its zero
and globally change its shape [114, 115]. The QED effects on AFB for the reaction
e+e− → µ+µ− are illustrated in Fig. 21.

The whole set of QED corrections to s-channel e+e− annihilations can be divided
into three subsets, each separately gauge-invariant:
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Fig. 19. – The left windows show the bulk of electroweak/QCD corrections as obtained by
means of a “tree-level like” calculation (dotted line) and the residual effect of a complete elec-
troweak/QCD calculation (dashed line). The right windows show a blow-up of this last differ-
ence. Numerical results for the full electroweak/QCD prediction by TOPAZ0 [111].

• initial-state corrections;

• final-state corrections;

• initial-final state interference.

The initial-state corrections are by far the dominant ones, because, at a difference
from final-state and initial-final state interference contributions, they are responsible for
a reduction of the c.m. energy available for the hard-scattering reaction.

3
.
4.1. Initial-state radiation. The Feynman diagrams for O(α) initial-state QED

corrections to a generic s-channel process e+e− → γ, Z0 → f f̄ are depicted in Fig. 22.

Since at LEP1 energies the electron-positron collision takes place at energies very
close to the Z-boson mass, MZ , the radiation emitted by the initial-state (ISR) is es-
sentially radiation of soft photons. This remarkable property is a direct consequence of
the fact that the maximum energy of the photons emitted by the initial-state can not
exceed the ratio εmax = ΓZ/MZ , with εmax ≃ 0.03. In fact, the finite Z-boson width,
ΓZ , acts as a natural cut-off that strongly inhibits the emission of those hard photons, of
energy fraction larger than εmax, that would prevent the formation of the Z0 resonance.
This soft-photon dominance at the Z0 peak is a very useful guideline when facing the
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Fig. 20. – The effect of QED corrections on the Z0 line-shape of e+e− → hadrons. The dashed
line is the QED-deconvoluted cross section, the solid line is the QED corrected one. Numerical
results by TOPAZ0 [111].

problem of including finite order perturbative corrections, beyond the leading logarith-
mic (LL) approximation, that are actually demanded by the high-precision level of the
LEP1 measurements.

As recalled in Sect. 2
.
3, the n-th order contribution to a QED corrected cross section

σ(n) can be cast in the form

σ(n) =
(α

π

)n n
∑

k=0

a
(n)
k Lk,(102)

where L = L(s) = L − 1. The coefficients a
(n)
k in eq. (102) are given by the following

expression

a
(n)
k =

k
∑

j=0

bkj l
j,(103)

where l is the so called IR logarithm given by l = ln(E/∆E), ∆E being the maximum
energy of the emitted photons. This general expansion obviously applies to the IS QED
corrected cross section. For example, the up to O(α) cross section in the soft-photon
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Fig. 21. – The effect of QED corrections on the forward-backward asymmetry AF B of e+e− →
µ+µ− around the Z0 peak. The dashed line is the QED-deconvoluted asymmetry, the solid line
is the QED corrected one. Numerical results by TOPAZ0 [111].

approximation, as obtained by standard diagrammatic techniques, reads

σ(α)(s) = σ0(s)

{

1 +
α

π

[

− 2l(L − 1) +
3

2
L +

π2

3
− 2

]}

,(104)

which shows a large O(α) negative correction, clearly indicating that higher-order QED
corrections are required for a high-precision reconstruction of the Z0 line-shape. These
higher-order effects are kept under control at all orders by employing one of the ap-
proaches described in Appendix A. For instance, in the structure function (SF) approach
the LL-corrected cross section, in the extrapolated set-up, can be written as

σ(s) =

∫ ∆E/E

0

dxH(x, s)σ0 ((1 − x)s) ,(105)

H(x, s) being the QED radiator of eq. (186), and σ0(s) being the lowest order cross
section, possibly including all the short-distance process dependent corrections, as the
electroweak and QCD ones previously discussed. This allows to exactly reproduce the
LL content of eq. (102) at any order and, in particular, that of eq. (104) at O(α) (see the
series expansion in the LL approximation given by eq. (12) in Sect. 2

.
3 ). The sub-leading

terms present in eq. (104) are not naturally reproduced by the perturbative expansion
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Fig. 22. – The Feynman diagrams for O(α) initial-state QED corrections to s-channel process
e+e− → γ, Z0 → ff̄ .

of the cross section obtained via the algorithms for the calculation of universal photonic
corrections. It is worth noting that they are numerically important for a description of
the Z0 line-shape with a theoretical accuracy at the 0.1% level. For this reason, they are
usually incorporated in the algorithms for the resummation of LL corrections, by means
of a proper matching with the perturbative diagrammatic results. For instance, in the SF
approach, a standard procedure consists in replacing the Gribov-Lipatov form factor in

front of the exponentiated term of the SF’s (β/2) (1− x)
β
2
−1 by means of a soft+virtual

K-factor ∆′
S+V given, up to the first order in α, by

∆′
S+V (s) = 1 +

α

2π

[

3

2
L +

π2

3
− 2

]

,(106)

in such a way that the up to O(α) cross section of eq. (104) is exactly reproduced.
By virtue of the soft-photon dominance in the ISR mechanism previously discussed,
the hard-photon non-leading contributions, left-over in the above derivation, turn out
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to be numerically unimportant at LEP1. For the applications to precision physics at
the Z0 peak, the inclusion of sub-leading terms in the SF approach is pushed up to
O(α2) [112], relying upon the exact second-order calculation of initial-state QED correc-
tions to s-channel processes available in the literature [41,116,117]. By exploiting again
the soft-photon dominance, one can extract from the second-order complete calculation
the soft+virtual contributions only, so that the up to O(α2) K-factor, to be placed in
front of the electron SF, can be cast in the form

∆′
S+V (s) = 1 + ∆

′ (α)
S+V (s) + ∆

′ (α2)
S+V (s)(107)

and is calculable through the relation

∆S+V (s) =
(

∆′
S+V (s)

)2 − π2

24
β2.(108)

The quantity ∆S+V (s) contains the non-leading non-IR sensitive diagrammatic correc-
tions to the cross section corrected by the inclusion of soft+virtual photons up to O(α2),
analogous to the one shown in eq. (104). Equation (108), that relates ∆S+V (s) and
∆′

S+V (s), can be derived from the explicit integration of eq. (172) in Appendix A in the
soft-photon approximation. By inspection, ∆S+V (s) is given by

∆S+V (s) = 1 +
(α

π

)

∆
(α)
S+V (s) +

(α

π

)2

∆
(α2)
S+V (s),(109)

where the perturbative corrections ∆
(α)
S+V (s) and ∆

(α2)
S+V (s) are explicitly given by

∆
(α)
S+V (s) =

3

2
L +

π2

3
− 2,

∆
(α2)
S+V (s) =

(

9

8
− π2

3

)

L2 +
[

− 45

16
+

11

12
π2 + 3 ζ(3)

]

L + constant terms.(110)

In eq. (110) ζ is the Riemann function, with ζ(3) ≃ 1.202. With respect to the exact
second-order calculation, O(α2) sub-leading non-soft corrections are neglected, but they
are negligible in the resonance region, their contribution to the cross section being at the
level of 0.01% [113, 118–120]. The above described procedure for matching LL results
with exact finite-order calculations is valid in the soft-photon approximation. It is worth
noticing, however, that a general prescription is also known, valid for any ES, i.e. taking
into account also hard-photon contributions, as can be found in [23].

A complete treatment of IS O(α2) QED effects to the Z0 line-shape requires, as a
last ingredient, the inclusion of the corrections arising from the conversion of a photon
into leptonic pairs and/or hadrons (pair corrections). These contributions, which are
dominated by e+e− pairs, can be included using the O(α2) formulae available in the
literature [121]. Their main effect is a reduction of the peak cross section of around
0.3%, hence significant in the light of the remarkable experimental precision of the LEP1
data.

Equation (105) allows to understand the main effects of ISR on the Z0 line shape.
Actually, since ∆E/E is of the order of ΓZ/MZ around the resonance, the explicit calcu-
lation of the integral appearing in eq. (105) in the soft-photon limit leads to the following
reduction of the peak height:

σ

σ0
≃
(

ΓZ

MZ

)β

≃ 0.75.(111)



52 G. MONTAGNA, O. NICROSINI and F. PICCININI

On the other hand, eq. (105) is nothing but a weighted average of the lowest-order cross
section for c.m. energies smaller than the nominal one, the weight being the radiator
H itself. This leads to a shift of the corrected peak position towards higher energies by
about 100 MeV, and to the raising of a radiative tail above the resonance (see Fig. 20).
It is worth noticing, in particular, that the contribution of soft-photon exponentiation
to the shift of the peak position is of the order of 15 MeV, and thus phenomenologically
relevant in view of the experimental precision of the determination of the Z-boson mass.

Before concluding the discussion on ISR, it is worth noticing that the analogue of
eq. (105) for the corrected forward-backward asymmetry in principle does not apply.
Indeed, since AFB is a less inclusive quantity than the total cross section, kinematical
effects can show up, thus introducing the need for improving eq. (105). However, at the
resonance these effects are negligible due to soft-photon dominance, and anyway they
can be naturally taken into account in a more appropriate SF formulation, as described
in [122].

3
.
4.2. Final-state radiation. The final-state QED corrections, although numerically

smaller than the IS ones under many typical experimental conditions, are an essential
ingredient for a high-precision phenomenology of the LEP1 processes. They must be
included in any formulation of Z0 physics that aims at a theoretical precision at the
level of 0.1%. The Feynman diagrams for O(α) final-state QED corrections to a generic
s-channel process e+e− → γ, Z0 → f f̄ are depicted in Fig. 23.

With respect to the emission of photons by the initial state, the mechanism of
bremsstrahlung by the final-state particles is no more characterized by the soft-photon
dominance discussed above, simply because the radiation process occurs after the forma-
tion of the Z0 resonance. This implies that the control on final-state QED corrections at
the level of sub-leading and constant terms necessarily requires a full perturbative calcu-
lation, including hard photon bremsstrahlung. A treatment of FSR completely flexible
with respect to any kind of ES requires the usage of numerical (Monte Carlo) techniques
in order to perform the phase space integrations in the presence of arbitrary cuts. How-
ever, when considering particular experimental selection criteria actually adopted by the
LEP Collaborations, it is possible to obtain the final-state O(α) QED correction accord-
ing to a completely analytical procedure [123,124]. In this case, the final-state corrected
cross section can be obtained by calculating the exact matrix element associated to the
gauge-invariant set of Feynman diagrams describing final-state real photon radiation in
e+e− annihilation (see Fig. 23), integrating it over the phase space allowed by cuts and
matching the obtained result with the soft+virtual correction. For example, if one as-
sumes that only an invariant mass cut of the type M2(f f̄) ≥ s0 is present, then the
above strategy leads to the following analytical correction factors [78, 122,124,125]

δfs
F+B

=
α

π
Q2

f

{

[

x +
1

2
x2 + 2 ln(1 − x)

]

Lf

+ x

(

1 +
1

2
x

)

ln x + 2 ln(1 − x) (ln x − 1)

+ 2 Li2(x)
}

,(112)

δfs
F−B

=
α

π
Q2

f

{

[

x +
1

2
x2 + 2 ln(1 − x)

]

Lf

+ 2 ln(1 − x) (ln x − 1) − 2 x
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Fig. 23. – The Feynman diagrams for O(α) final-state QED corrections to s-channel process
e+e− → γ, Z0 → ff̄ .

+ 2 Li2(x)
}

,(113)

where Lf = ln(s/m2
f ), x = s0/s and (F ± B) denotes the forward ± backward cross

sections defined in eq. (22). In eq. (112) and (113), Li2(x) is the dilogarithm function.
It is worth observing that when no cuts are applied (i.e. in the limit x → 0 in the latter
equations) the final-state correction factor for the total cross section reduces to 3αQ2

f/4π,
that is the well-known inclusive final-state correction, while the asymmetry does not get
any effect. The very small value (0.17% for fermions with unit charge) of the final-
state correction to the fully inclusive cross section is a consequence of the cancellation of
mass and collinear singularities established by the Kinoshita-Lee-Nauenberg theorem [20].
Besides an invariant mass cut, also the effect of acollinearity and/or energy threshold cuts
can be treated analytically, and the expressions for the corresponding O(α) correction
factors can be found in the literature [124]. The availability of such results in analytical
form is of utility for Z0 physics at LEP1 in order to test Monte Carlo programs and to
develop fast computational tools for fitting realistic observables.

Whenever particularly tight cuts are imposed, the treatment of FSR at the O(α)
can become inadequate and a procedure of resummation of the LL contributions needs
to be advocated [126]. The leading terms can be quite easily identified either analyzing
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the explicit perturbative results or invoking one of the algorithms for the universal pho-
tonic corrections described in Appendix A. This allows to see that final-state leading
contributions are of the form

2
α

π
Q2

f ln(1 − s0/s) (Lf − 1) ,(114)

so that they can be extracted from the finite order correction and summed up to all orders
according to the preferred resummation technique. By using, for instance, a “naive”
exponentiation procedure, the final-state correction factor, including higher-order leading
contributions and exact sub-leading terms at O(α), can be cast in the form

δfs = ∆
′ (α)
V +S(s) exp

{

2
α

π
Q2

f ln(1 − s0/s) (Lf − 1)
}

+ δfs,r,(115)

where ∆
′ (α)
V +S(s) is the soft+virtual K-factor of eq. (106) (provided that the substitution

me → mf is performed in the collinear logarithm) and δfs,r is the residual correction
factor including sub-leading terms as obtained after depuration of leading logarithms
from the complete O(α) results.

All the above discussion and formulae concerning FSR are valid for a non-calorime-
tric ES (see Sect. 2

.
3 for more details) according to which the energy of the final-state

fermions measured by the experimental apparatus coincides with the energy of the “bare”
particles, regardless of the emission of collinear final-state photons. However, when
considering the process of large-angle Bhabha scattering, this assumption turns out to
be unrealistic. Actually, what is detected in the real environment is an electromagnetic jet
of half-opening angle δc, where δc is an experimental parameter describing the resolution
power of the calorimeter. This electromagnetic effect can be analytically accounted for
by adding to the O(α) final-state correction for “bare” electrons the contribution due
to a hard photon of energy fraction greater than 1 − x, where x is s0/s for an invariant
mass cut and 2E0/

√
s for an energy threshold cut, and collinear with the final fermion

within an angle 0 ≤ ϑγ ≤ δc. For electrons in the energy regime of LEP the contribution
reads [127]

Fcoll = 2
α

π
C,

C = − ln(1 − x)
[

ln
(

1 + r2x2
)

− 1
]

+
[1

4
−
(

1 − 1

2
(1 − x)

)2]

ln
(

1 + r2x2
)

+
π2

3
+

9

4
− 5

2
(1 − x) +

1

4
(1 − x)2

+ 2 ln x ln(1 − x) + 2Li2(1 − x),(116)

where

r =
δc
√

s

2me
,(117)

me being the electron mass. Equation (116) holds under the conditions δc ≪ 1 rad and
r ≫ 1, that are both very well satisfied at LEP, where δc is of the order of a few degrees.
It is worth stressing that the effect of the calorimetric measurement, superimposed over
the correction for “bare” final-state particles, depends very critically on the energy or
invariant mass threshold, being at the level of 0.1% for low energy thresholds (around
1 GeV) but raising to order 1 per cent at, say, 10 GeV.
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3
.
4.3. Initial-final state interference. While the initial- and final-state QED correc-

tions are functions of s only, the initial-final state interference correction depends also on
the fermion scattering angle ϑ and therefore induces a modification of the ϑ dependence
of the Born differential cross section. It receives contributions from the interferences be-
tween the real radiation diagrams of Figs. 22 and 23 and from the interference between the
tree-level amplitudes and the QED box diagrams shown in Fig. 24. The leading angular
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Fig. 24. – The Feynman diagrams for O(α) QED box corrections to s-channel process e+e− →
γ, Z0 → ff̄ .

dependent terms that enter the result are of the form ln(t/u) = ln (tan(ϑ/2)) [128,129].
This explains why the initial-final state interference is numerically small under many
realistic experimental conditions, even if its actual magnitude crucially depends on the
applied cuts. A physical argument can also be advocated to understand the rôle of the
initial-final state interference in the region of the Z0 resonance. In fact, when the Z0 is
produced close to its mass shell, the wave functions for initial- and final-state radiation
are separated in space-time due to the finite Z0 lifetime, so that their overlap is small.
This implies that for loose cuts the interference effect is typically at the level of 10−3 or
even smaller. Only when particularly tight cuts are imposed or one moves away from the
peak, the above argument is invalidated and the interference can become more sizeable.
In order to keep under control all the situations, the correction due to the initial-final
state interference is included in the theoretical predictions, generally using the existing
exact O(α) calculations (including hard bremsstrahlung), that are sufficient for the realis-
tic ES. For very tight, unrealistic, photon energy cuts, a proper exponentiation procedure
can be introduced.

3
.
5. Computational Tools. – In order to perform actual precision tests of the elec-

troweak theory in e+e− collisions at the Z0 pole, very precise measurements of cross
sections and asymmetries are required, that in turn imply, together with a high statis-
tics, a deep knowledge of systematics effects, such as the acceptance, selection efficiency



56 G. MONTAGNA, O. NICROSINI and F. PICCININI

and backgrounds for a given reaction. The tools used by LEP Collaborations to determine
experimental acceptances and efficiencies are unavoidably Monte Carlo event generators
since they allow to simulate experimental cuts with the maximum flexibility. Just to
give some examples, the LEP experiments commonly use the generators HERWIG [130]
and PITHYA/JETSET [131] to simulate the process e+e− → hadrons, KORALZ [132] for
the production of µ and τ pairs, BHAGENE3 [133], BHWIDE [134] and UNIBAB [135] for the
large-angle Bhabha scattering. HERWIG and PITHYA/JETSET are generators for the study
of hadronic final states in e+e−, ep and pp collisions, describing the phase of parton
cascade in the framework of perturbative QCD and the hadronization mechanism by
using independent theoretical models. KORALZ is a Monte Carlo program developed for
s-channel e+e− → f f̄ processes, including electroweak loops and using YFS exponen-
tiation (see Appendix A) for the treatment of photonic radiation. Large-angle Bhabha
generators will be described in the following.

However, in addition to Monte Carlo Generators, fast analytical and semi-analytical
programs are of utmost importance for Z0 precision physics, because, although they can
account for simple kinematical cuts only, they are necessary tools in order to extract the
electroweak parameters from the measurements according to an iterative fitting proce-
dure. These fitting programs are also said electroweak libraries. As a matter of fact,
the fitting programs mostly used by the LEP Collaborations are BHM [136], MIZA [137],
TOPAZ0 [111] and ZFITTER [138]. However, the extreme complexity in the calculation
of radiative corrections and the relevance of improvements and cross-checks for preci-
sion physics at LEP, motivated a number of theoretical groups to develop completely
independent and original electroweak libraries. The availability of various independent
electroweak libraries turned out to be particularly useful in the context of the job of the
Electroweak Working Group at CERN [76]. The aim of such a collaboration work was
the estimate of the theoretical error inherent to the SM predictions for e+e− → f f̄ pro-
cesses, in view of the final analysis of LEP precision data (see Sect. 3

.
6 for more details).

The basic features of the codes that contributed to reach the above task are shortly de-
scribed in the following, with particular emphasis on their main physics input as well as
their numerical output. However, for more details on technical aspects of these programs
and their underlying formulation, the reader is referred to the original literature and to
ref. [76].
BHM [136] — It is a semi-analytical program for the calculations of the Z0 parameters
and realistic observables for an extrapolated set-up only. It relies upon the on-shell
renormalization scheme for the formulation of weak loops and the QED radiator for the
treatment of ISR (see Appendix A).
LEPTOP [139] — It is an analytical code, developed by the ITEP Moscow group, giving
predictions for the the Z0 parameters in the so-called α-Born approximation. It consists
in taking as “tree-level approximation” the one obtained by using α(MZ) overall, and
computing sin2 ϑW from α(MZ), Gµ and MZ , with the residual electroweak corrections
on top of this.
TOPAZ0 [111] — It is a semi-analytical program, developed by the Pavia and Torino
groups, that can be used to calculate both pseudo-observables and realistic observables,
the latter over both an extrapolated and a more realistic set-up. It is additionally able
to calculate the full Bhabha scattering cross section at large angles. It employes the MS
scheme for the treatment of the electroweak corrections. QED corrections are exactly
included at O(α) for s-channel processes, at the LL level for t and s-t contributions to
the large-angle Bhabha scattering. On top of that, higher-order QED corrections are
implemented using the SF approach (see Appendix A).
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WOH [140] — It is an analytical code for the calculation of the pseudo-observables only. It
is based on the on-shell renormalization scheme and, basically, it leads back to the same
approach of BHM, so that BHM/WOH are not completely independent of one another.
ZFITTER [138] — It is a semi-analytical program, of the Dubna-Zeuthen group, that, as
TOPAZ0, allows to obtain predictions for both the pseudo-observables and the realistic
ones, but excluding large-angle Bhabha scattering. The on-shell renormalization scheme
is used for electroweak loops; QED corrections are exactly treated at O(α), together with
soft-photon exponentiation for ISR and FSR.

To summarize, all the above codes can provide predictions for the Z0 parameters
and therefore can all be used as fitting tools to these de-convoluted quantities. BHM,
TOPAZ0 and ZFITTER can also calculate realistic observables and fit data for such observ-
ables. TOPAZ0 is also additionally able to calculate the full Bhabha scattering observables.
Concerning the treatment of electroweak loops, the codes employ completely indepen-
dent calculational schemes, with the exception of BHM/WOH that essentially are based on
the same approach. QED corrections in the three QED dressers are treated according
to different theoretical methods, whereas QCD corrections are common to a large extent
in all the codes. How these codes were used as tools to estimate the intrinsic theoretical
uncertainties in precision calculations for the Z0 resonance is explained in Sect. 3

.
6.

The special rôle played by large-angle Bhabha (LABH) scattering in Z0 precision
physics led the to development of dedicated semi-analytical and Monte Carlo programs
for such a process. Two of them, BHAGEN95 and TOPAZ0, have been previously described,
the former in Sect. 2

.
4 and the latter here in the present Section. The other programs

used by the LEP experiments for the study of e+e− → e+e− at large angles are briefly
described in the following. It is worth pointing out that the Bhabha process, when con-
sidering large scattering angles and the energy region around the Z0 peak, is basically a
s-channel resonant process with “small” non-resonant contributions, so that its dynam-
ics is completely different from that of the same process at small scattering angles, that
has been already discussed in details in Sect. 2. In particular, whereas non-QED effects
other than vacuum polarization are absolutely negligible in the SABH case, an accurate
treatment of the electroweak loops is a necessary ingredient for a precision calculation of
the LABH reaction [78, 141, 142]. As a consequence, the computational tools (and their
underlying formulations) for the LABH process are very different with respect to the
ones used for the luminosity monitoring and already described in Sect. 2

.
4.

ALIBABA [142] — It is a semi-analytical program, implementing exact O(α) weak and
QED corrections to all Bhabha channels. The higher-order QED effects consist of LL
O(α2) plus soft-photon exponentiation.
BHAGENE3 [133] — It is a Monte Carlo event generator, including one-loop and the most
relevant two-loop electroweak corrections. The O(α) QED corrections uses the exact
matrix element and are supplemented with higher-order soft-photon effects.
BHWIDE [134] — It is a recent Monte Carlo event generator, based on the electroweak
library of ALIBABA for the treatment of O(α) weak and QED corrections. It includes
multiphoton radiation in the framework of Yennie-Frautschi-Suura (YFS) exponentia-
tion (see Appendix A) and can be considered as the extension of the code BHLUMI (see
Sect. 2

.
4) to large angles.

UNIBAB [135] — It is a Monte Carlo event generator, relying upon an updated version
of the ALIBABA electroweak library. The QED corrections are implemented assuming
s-channel dominance and using photon shower algorithms for ISR and FSR (see Ap-
pendix A).

A more extensive description of the LABH programs, together with global compar-



58 G. MONTAGNA, O. NICROSINI and F. PICCININI

isons between the semi-analytical and Monte Carlo programs, can be found in the recent
work of ref. [18]. At LEP1, when analyzing LABH data, the common procedure employed
is the so-called t-channel subtraction, where t and s-t contributions are subtracted from
the data. As a matter of fact, the two programs commonly used to perform this unfold-
ing are ALIBABA and TOPAZ0. Furthermore, besides the programs described above, one
should also mention the codes ALISTAR and MIZA, that are basically rearrangements of
ALIBABA developed for fitting purposes and specific experimental needs.

3
.
6. Theoretical Uncertainties. – The very high experimental precision reached by the

LEP Collaborations in the measurement of the Z0 parameters and realistic observables
(of the order of 0.1% or even below), necessarily requires a careful estimate of the intrinsic
uncertainties associated to the SM theoretical predictions for these observables. In fact,
as already discussed in Sect. 2

.
5 when addressing the problem of the total theoretical error

in the luminosity measurement, any prediction obtained via a perturbative expansion is
intrinsically affected by an uncertainty that is mainly due to neglecting higher-order
contributions. The evaluation of such an uncertainty turns out to be a particularly
severe problem whenever considering precision calculations for the Z0 resonance, since
the higher-order contributions depend in a highly non-trivial way on the whole stuff of
radiative corrections in the SM (weak, QCD, mixed ew/QCD, QED). For this reason,
a combined effort by different groups of theorists is in principle the best strategy to
address this delicate subject. Such an effort was pursued by the collaboration work of
the Electroweak Working Group, held at CERN, Geneva, during 1994 and concluded at
the beginning of 1995. The composition of the Electroweak Working Group consisted of
the authors of those formulations and relative computational programs containing at that
time the state-of-the-art of the radiative corrections to the electroweak Z0 observables:
BHM, LEPTOP, TOPAZ0, WOH and ZFITTER. They have been already described in some detail
in the previous Section. Because all these codes basically include the same content in
the perturbative expansion ( i.e. exact O(α) electroweak corrections plus higher-order
leading contributions), but differ in the choice of the renormalization scheme and in the
treatment of higher-order sub-leading effects, they are ideal tools to provide an estimate
of the theoretical uncertainties. The latter can be classified as follows:

• Parametric uncertainties: are related to the experimental precision of the input pa-
rameters. Among them, the largest uncertainty comes from α(MZ): |∆α−1(MZ)|
= 0.09; other sources are the errors on αs(MZ) and on the heavy-quark masses.
These uncertainties can be estimated comparing the effects of variations in the
input parameters within their errors [76].

• Scheme-dependence uncertainties: are associated to the choice of the calculational
scheme. In fact, in a given renormalization framework the truncation of the per-
turbative series is realized in some specific way. An estimate of these uncertainties
can be obtained by comparing the predictions for a given observable obtained with
two codes based on different renormalization schemes. This is possible since, as
discussed in Sect. 3

.
5, BHM/WOH and ZFITTER employ the on-shell scheme, TOPAZ0

makes use of the MS scheme and an original approach is implemented in LEPTOP .

• Intrinsic uncertainties: are inherent in a given renormalization framework. They
are a consequence of the still missing higher-order terms, reflecting in a certain
degree of arbitrariness on how to combine the various theoretical ingredients in
order to get the final expressions for the observables. This arbitrariness can be
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quantified using the concept of option, i.e. a set of alternative but equally plausible
implementations of the building blocks of the radiative corrections within a given
calculational scheme [143].

To better illustrate the meaning of intrinsic uncertainties, it is worth presenting
and discussing a few examples of option. A first one [144] refers to different possible
implementations of QCD and QED final-state corrections to a given Z0 partial width
Γf = Γ(Z → f f̄). Let us suppose that O(α) QED and O(α2

s) QCD corrections to the
above width are known but that the mixed O(ααs) corrections have not yet been calcu-
lated. Therefore, one can combine the two above final-state corrections either according
to a factorized representation

Γf = ΓEW
f

(

1 +
3

4
Q2

f

α

π

)[

1 +
αs

π
+ c2

α2
s

π2

]

,(118)

or an expanded one

Γf = ΓEW
f

[

1 +
3

4
Q2

f

α

π
+

αs

π
+ c2

α2
s

π2

]

.(119)

In the latter equations, ΓEW
f denotes the electroweakly-corrected partial width. Owing

to the lack of knowledge of the exact O(ααs) corrections, the two realizations are of
course equally correct and could be both implemented into a program as two different
options. They differ by a term of the order of 3ααsQ

2
f/4π2, that can be seen as a naive

estimate of the unknown mixed corrections. The explicit calculation of such corrections
should reduce the uncertainty moving it to O(αα2

s). Indeed, this correction is today
available, giving the result
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,(120)

so that the two above realizations can not be longer seen as options.
Another theoretical uncertainty, which is related to the pure weak corrections to

the pseudo-observables, is the leading-remainder splitting in the effective couplings dis-
cussed in Sect. 3

.
2.3. These generally contain a leading universal part, which is usually

resummed, and a non leading (remainder) part. The way of performing the separation
between leading and remainder part and the way of treating the last are not uniquely
defined, so that they are a source of theoretical uncertainty. A typical example is pro-
vided by ∆r (the same reasoning, as the one shown in the following, also holds for the
quantities δρf and δkf ) introduced in eq. (55) and split into a leading and a remainder
part according to eq. (56), where the leading term contains the light fermion mass sin-
gularities and the terms proportional to m2

t . In this separation the remainder contains,
among others, logarithmic contributions in the top-quark and Higgs-boson masses, which
can be numerically important. In resumming ∆r as in eq. (61), to take into account of
the leading terms to all orders, different ways of treating ∆rrem are in principle possi-
ble, i.e. they are different options which give an estimate of the associated theoretical
uncertainty [76]:

1

1 − ∆rL − ∆rrem
,

1

1 − ∆rL

(

1 +
∆rrem

1 − ∆rL

)

,
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1 + ∆rrem

1 − ∆rL
,

1

1 − ∆rL
+ ∆rrem.

In the specific case of ∆r, the last two expansions are not valid according to the arguments
given in ref. [68].

The two examples given above should clarify the meaning of intrinsic theoretical
error and how to estimate it by considering proper options. Actually, apart from the
factorization of QCD and EW corrections and the leading-remainder splitting, other
options have been carefully examined by the Electroweak Working Group, such as the
choice of the scale of α in the non-leading corrections (in particular the vertex correc-
tions), the linearization of the radiatively corrected quantities like sin2 ϑl

eff , different
choices of implementing the resummation of the vector-bosons self-energies, in particular
the terms related to the Higgs-boson contribution, and the choice of the scale of αs in
the mixed electroweak-QCD corrections. The results obtained by the work of the Elec-
troweak Working Group, based on a careful analysis of both the pseudo-observables and
realistic ones, allowed to draw at that time (beginning of 1995) the following conclusions
on the theoretical accuracy of the precision calculations for the Z0 resonance [76]:

• the differences between the predictions of different computational tools are small
compared to the experimental errors;

• the parametric uncertainty due to ∆αhad is the dominant source of error and the
real “bottleneck” to improve the theoretical accuracy; only new accurate measure-
ments of the cross section of e+e− → hadrons at low energy could reduce it;

• complete one-loop calculations, supplemented with higher-order leading effects are
adequate for Z0 precision physics, but the control on two-loop electroweak sub-
leading corrections would significantly reduce the still remaining uncertainty.

The first two conclusions still remain valid today. Concerning the third point,
progress in the calculation of important two-loop electroweak sub-leading corrections has
been achieved after the conclusion of the work of the Electroweak Working Group. In
fact, the two-loop next-to-leading heavy top-quark contributions of the order of Gµm2

t M
2
Z

to the MW -MZ interdependence and to sin2 ϑlept
eff have been completely calculated in the

MS framework and for two different realizations of the on-shell scheme [88, 89] (see
also [90,91]). These newly calculated corrections give a nice reduction of the theoretical

error of electroweak origin, especially for MW and sin2 ϑlept
eff [89, 145], even if it should

be noticed that they have not yet been implemented, at the time of writing, in standard
computational tools for LEP1 precision physics.(3)

Concerning the theoretical uncertainty associated to the treatment of QED correc-
tions, of utmost importance for the study of the realistic distributions, the conclusions
of the analysis performed by the Electroweak Working Group, as obtained through a
critical comparison of QED dressers over both an extrapolated and realistic set-up, can
be summarized as follows:

(3) After the completion of this work, the two-loop electroweak sub-leading corrections of refs. [88, 89],
together with the QCD calculation of ref. [106] and the QED effects studied in ref. [120], have been
implemented in a new version of the code TOPAZ0 [146].
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Fig. 25. – A comparison between theoretical predictions for the hadronic cross section. The
squares, diamonds and crosses represent BHM [136], TOPAZ0 [111] and ZFITTER [138], respectively
(from ref. [76]). The lower window shows the predictions of the codes together with their
estimate of the theoretical error.

• for s-channel annihilation processes, the theoretical error is of the order of 0.1%,
almost independently of the considered c.m. energy (see Figs. 25 and 26);

• for full Bhabha scattering, the theoretical accuracy can be estimated, with due
caution, to be at the level of 0.1-0.2% before and strictly around the peak, growing
to about 1% (depending on the imposed experimental cuts) on the hard radiative
tail.

It is worth pointing out that the above uncertainties associated to the photonic
corrections actually match the statistics and systematics of the LEP1 data for the realistic
distributions. In fact, whenever a somehow large theoretical error is present for full
Bhabha scattering, this shows up in an energy regime (the hard radiative tail above the
peak) where the experimental precision is much lower (i.e. around an order of magnitude
larger) than the corresponding theoretical accuracy.
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Fig. 26. – The same as in Fig. 25 for the µ forward-backward asymmetry (from ref. [76]).

As far as s-channel processes are considered, the estimate of the QED theoretical
accuracy provided by the Electroweak Working Group has been recently reinforced by
a novel investigation of the effects of LL O(β3) photonic corrections to the QED radia-
tor [120], usually neglected in standard computational tools and not taken into account
in the analysis of the Electroweak Working Group. In fact, it has been shown that the
O(β3) corrections introduce, on an extrapolated cross section computed with a standard
QED radiator with up to O(β2) non-soft terms, a systematic shift of around -0.07%,
that confirm a posteriori the estimate of the Electroweak Working Group. However, the
size of the effect also indicates that these LL third-order QED corrections should be
carefully taken into account in the theoretical predictions for the realistic observables of
two-fermion production, in the light of the latest experimental data for some realistic
observables, such as the cross section of e+e− → hadrons.

Concerning the estimate of the theoretical error in the large-angle Bhabha scatter-
ing, it substantially traces back to a certain disagreement between the predictions of
ALIBABA and TOPAZ0 far from the peak and due, as discussed in the literature [78], to
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a different implementation of QED final-state corrections, yielding a difference in the
treatment of O(α2) sub-leading contributions. In fact, in ALIBABA final-state corrections
are implemented factorizing the leading terms only and summing up at O(α) non-leading
effects, whereas in TOPAZ0 a fully factorized prescription is followed, in order to preserve
the so-called classical limit according to which the cross section of a real scattering pro-
cess must vanish in the absence of electromagnetic radiation. This fundamental property
is not guaranteed by an additive formulation. Furthermore, as shown and extensively
discussed in [23], a fully factorized form allows to keep under control in an effective way
the bulk of O(α2) next-to-leading QED corrections of the order of O(α2L), that are on
the contrary completely absent in the additive prescription (see also the discussion given
in Sects. 2

.
3, 2

.
5 and 2

.
6 on the rôle of the O(α2L) corrections in the present theoretical

error to the SABH process). Therefore, with respect to an additive formulation, a fac-
torized formulation is more accurate from the point of view of the perturbative content
as well as more theoretically founded. However, after the completion of the work per-
formed in ref. [76], a much more extensive analysis of the large-angle Bhabha process has
been performed in ref. [18]. In this last analysis, several codes other than ALIBABA and
TOPAZ0, noticeably BHWIDE, have been used for the comparisons. Moreover, also more
realistic ES’s have been adopted, namely calorimetric ES’s in addition to the unrealistic
BARE ES adopted in ref. [76], and this is a key point in order to obtain a reliable error
estimate (see the discussion in Sect.2 for more details). Thanks to these results, it may
be concluded that the theoretical error of the large-angle Bhabha scattering is 0.3% on
peak, and 0.5% off peak [18].

4. – Fits to Precision Data

The application of the theoretical results discussed in Sect. 3 to the analysis of preci-
sion data collected at LEP1/SLC leads to the indirect determination of the fundamental
parameters of the Standard Model (SM). Actually, the high experimental accuracy makes
the electroweak measurements on the Z0 peak sensitive to the mass of the particles cir-
culating in the loops, although they are not energetically accessible. Hence the precision
data can be used to infer valuable constraints on the top-quark and the Higgs-boson
masses, as well as on the value of the strong coupling constant αs. The level of agree-
ment between theory and experiment allows in addition to derive hints on possible new
physics scenarios beyond the standard description of fundamental particles and interac-
tions.

The present section is devoted to illustrate the procedure adopted by the experi-
ments to extract the electroweak Z0 parameters from the directly measured production
cross sections and forward-backward asymmetries. The interpretation of the experimen-
tal results in terms of the SM parameters is discussed. The most recent indirect limits
obtained for the top-quark and Higgs-boson masses via the virtual effects due to radia-
tive corrections to the precision observables are presented, and compared with present
information from direct searches. The determination of αs from precision data at the Z0

pole is compared with other measurements in different processes and at different energy
scales. The issue of a more model-independent attitude towards the precision measure-
ments is in conclusion addressed, discussing the S-matrix approach as a framework for
a model-independent determination of the Z-boson parameters, and the ε parameteriza-
tion of pure weak loops as a strategy for a model-independent analysis of the electroweak
quantities. The implications of precision data for new physics beyond the SM are briefly
examined.
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4
.
1. Determination of the Electroweak Parameters. – The “primary” observables

measured by the LEP experiments are the cross sections and forward-backward asymme-
tries of the two-fermion processes e+e− → γZ → f f̄ quoted as a function of the centre
of mass (c.m.) energy (see Sect. 3

.
1). The channels considered are the hadronic (qq̄) and

leptonic (l+l−, l = e, µ, τ) final states. The cross section data are determined by making
use of the relation of eq. (2) in Sect. 2

.
1, once the number of events for a given channel

has been determined and corrected for the trigger efficiency, the geometrical acceptance
and the efficiency of the selection cuts. Analogously, the data for the forward-backward
(FB) asymmetry AFB are obtained exploiting the definition

AFB =
NF − NB

NF + NB
,(121)

where NF (NB) is the number of events collected with a forward (backward) scattered
fermion. This determination of the FB asymmetry is known as the counting method.
Alternatively, the FB asymmetry is obtained from a maximum likelihood fit of an asym-
metric differential cross section of the form

dσ

d cos ϑ
∝ 1 + cos2 ϑ +

8

3
AFB cos ϑ(122)

to the experimental angular distribution. The expression given by eq. (122), where ϑ is
the angle between the incoming electron and the outgoing fermion, is the form predicted
by the electroweak theory in the lowest-order approximation and applies to s-channel
annihilation only. For e+e− → e+e−, due to the presence of t-channel contributions, a
similar but more complicated expression is used. This second determination of the FB
asymmetry is known as the fitting or likelihood method.

From the measured hadronic and leptonic cross sections and leptonic forward-back-
ward asymmetries, the parameters of the Z0 resonance are extracted by the LEP Collab-
orations by means of a combined fit to the data [147]. The Z0 parameters are obtained
using a χ2 minimization procedure with the correlations among the data (common ex-
perimental errors, theoretical luminosity error, uncertainties from the LEP energy cali-
bration, etc.) taken into account using a covariance matrix. Several sets of parameters
can be (and actually are) introduced to parameterize the measurements. However, in
order to make possible a combination of the results obtained by each of the four LEP
Collaborations as well as for comparison purposes, the LEP experiments use a standard
set containing nine free Z0 parameters:

• the Z-boson mass, MZ , and its total width ΓZ ;

• the hadronic pole cross section σ0
h, defined by eq. (31) in Sect. 3

.
1;

• the ratios Re,µ,τ = Γh/Γe,µ,τ ;

• the pole asymmetries Ae
FB , Aµ

FB, Aτ
FB, that can be expressed in terms of the effec-

tive vector and axial-vector neutral current couplings of the fermions according to
the relations given by eqs. (32) and (35) in Sect. 3

.
1.

These parameters are chosen because they are most directly related to the experimental
quantities and are weakly correlated. If the assumption of lepton universality is addi-
tionally introduced, then the numbers of parameters reduces from nine to five, i.e.

MZ , ΓZ , σ0
h, Rl = Γh/Γl, Al

FB,(123)
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that actually is another standard set of parameters commonly used by the LEP Collab-
orations.

The extraction of the Z0 parameters from a combined fit to the hadronic and leptonic
cross sections and leptonic forward-backward asymmetries requires that an appropriate
parameterization for these last realistic observables is introduced. By exploiting the
relation between the effective couplings and the Z0 partial width, the cross section can
be written in terms of mass, total and partial widths of the Z boson, without relying upon
any particular assumption on the validity of the Standard Model (SM) [113,148,149]:

σ(s) =
12πΓeΓf

|s − M2
Z + iMZΓZ(s)|2

(

s

M2
Z

+ Rf
s − M2

Z

M2
Z

+ If
ΓZ

MZ
+ . . .

)

+ σγ ,(124)

where

ΓZ(s) = ΓZ

(

s

M2
Z

+ ε
s − M2

Z

M2
Z

+ . . .

)

,(125)

and the partial widths are understood expressed in terms of the Z0 parameters. The
term σγ identifies the γ-exchange contribution known from QED, Rf and If describe
the γ-Z interference and ε is the correction due to finite final-state fermion mass effects.
This procedure justifies the typical Breit-Wigner ansatz for the Z0 contribution adopted
by the LEP Collaborations,

σf
Z =

12π

M2
Z

ΓeΓf
s

(s − M2
Z)2 + s2Γ2

Z/M2
Z

,(126)

for a given f f̄ channel, although the forms actually used by each experiment may dif-
fer in some detail. The photon-exchange contribution is calculated from QED and the
γ-Z electroweak interference is taken into account as well, usually computing it within
the SM. Although the interference contribution is small around the Z0 peak, it is im-
portant for the precise measurement of MZ and therefore some more general fit, where
the SM dependence of the γZ effect is somehow relaxed, are actually performed by the
experiments (see Sect. 4

.
3.1 below).

It is worth pointing out that the above parameterization is introduced in order to
describe just the short-distance behaviour of the cross section. Indeed, in the fit of
the Z0 parameters to the measured data, the QED radiative corrections enter as an
unavoidable theoretical ingredient, and they are taken into account according to the
algorithms described in Sect. 3

.
4 and in Appendix A. A complication in the fitting

procedure arises when considering the Bhabha channel e+e− → e+e−, because of the
presence of t-channel contributions. To minimize this contamination the experiments
adopt a selection with large polar angle acceptance (typically 45◦ < ϑ < 135◦) where the
s-channel Z-boson exchange largely dominates. The remaining t and s-t contributions
are generally calculated by using the programs ALIBABA and TOPAZ0, in order to correct
the cross section. The most recent LEP results for the Z-boson mass and width are
shown in Figs. 27 and 28, respectively.

In addition to the above Z0 parameters determined by means of a combined nine
(five) parameters fit to the cross sections and asymmetries, other important electroweak
observables are measured by the LEP experiments. Each of them is obtained according to
a well-defined experimental strategy applied to a specific f f̄ final-state. A first example
is given by the τ polarization asymmetry P τ that is defined as [150]

P τ =
σR − σL

σR + σL
,(127)
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Z-boson Mass  [MeV]

MZ  [MeV]

χ2/DoF: 2.0 / 3

LEP calibr.: ± 1.5

91180 91185 91190 91195

ALEPH 91188.3 ± 3.1
DELPHI 91186.6 ± 2.9
L3 91188.6 ± 2.9
OPAL 91184.1 ± 2.9

LEP 91186.7 ± 2.0

  

Fig. 27. – The Z-boson mass according to the most recent data analyses [7,8].

where σR(L) denotes the τ -pair cross section for the production of a right-handed (left-
handed) τ−. This quantity is experimentally determined by measuring the longitudinal
polarization of τ pairs produced in Z0 decays. The left-right asymmetry ALR is another
important manifestation of parity violation in weak interactions, that, however, requires
longitudinal polarization of the initial-state electrons. Owing to the difficulties in achiev-
ing a high degree of polarization at LEP collider because of the presence of depolarizing
effects, the left-right asymmetry has not been measured by the LEP experiments but
by the SLD Collaboration at SLC, where the conditions for polarization measurements
are much more favourable. In fact, an average degree of polarization of the incoming
electrons < Pe > reaching 77% has been obtained at SLC. The left-right asymmetry is
determined by the SLD experiment exploiting the relation [151]

ALR =
1

< Pe >

Nel
− Ner

Nel
+ Ner

,(128)

where Nel
and Ner

are the observed numbers of hadronic events using left-handed and
right-handed electron beams, respectively.

Further interesting electroweak observables in Z0 decays are derived from the anal-
ysis of the final states containing c and b quarks (heavy flavours). These measurements
require sophisticated tagging techniques of heavy flavours (such as mass or lifetime tag-
ging), whose description is beyond the aim of the present review (see for instance ref. [152]
for an overview of the tagging methods used at LEP). The Z0 parameters that are de-
termined from these studies are

Rb = Γb/Γh, Rc = Γc/Γh, Ab
FB , Ac

FB,(129)

where Γb(c) is the Z0 width for the decay into b(c) quarks, Ab
FB, Ac

FB are the b- and
c-quark pole forward-backward asymmetry. As already remarked in Sect. 3

.
1, the results
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ALEPH 2495.1 ± 4.3
DELPHI 2489.3 ± 4.0
L3 2499.9 ± 4.3
OPAL 2495.8 ± 4.3

LEP 2494.8 ± 2.5

1/α= 128.896 ± 0.090
αs= 0.118 ± 0.003
mt= 175.6 ± 5.5 GeV

 

Fig. 28. – The Z-boson width according to the most recent data analyses [7,8].

for Ab
FB and Ac

FB are quoted after having subtracted from the data, besides the effect
of initial-state radiation (ISR), also the effects of QCD corrections, in order to deal with
a pure electroweak observable.

Once the above “primary” Z0 parameters are extracted from the data, other impor-
tant additional quantities, such as the Z0 partial widths Γh, Γl and Γinv, are derived.
Γinv denotes the Z-boson invisible width that can be obtained via the relation (assuming
lepton universality)

Γinv = ΓZ − Γh − 3Γl.(130)

Its present experimental value is [7, 8]

Γinv = 500.1 ± 1.8 MeV.(131)

This quantity is of particular interest for the extraction of the number of light neutrino
species Nν . In order to get rid of the bulk of the non-negligible top-quark mass depen-
dence of the partial widths, Nν can be conveniently derived from the comparison of the
experimental ratio Γinv/Γl with the corresponding SM prediction, yielding the result [7,8]

Nν = 2.993 ± 0.011.(132)
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This determination, that firmly proves the existence of three standard light neutrino
families, agrees well with the independent measurement obtained by means of the process
e+e− → νν̄γ, known as radiative neutrino counting reaction. It gives rise to a signature
where only a single bremsstrahlung photon and nothing else is seen in the detector. The
Feynman diagrams contributing in the SM to this process are depicted in Fig. 29.
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γ , Z
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γ , Z
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ν
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e+

W

W

ν

ν
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e+

W
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ν

e-

e+

W

ν

ν

Fig. 29. – The tree-level Feynman diagrams for the process e+e− → νν̄γ.

The study of the radiative neutrino counting events offers the possibility to deter-
mine in a rather direct way the partial width of the Z0 into invisible particles, since the
Z-boson exchange contribution, largely dominating the e+e− → νν̄γ cross section around
the Z0 peak, is proportional to the number of neutrinos. For that reason, this procedure
is known as direct determination of the invisible width. In practice, the measured cross
section as a function of the c.m. energy is compared with the SM calculation for dif-
ferent numbers of neutrino generations. A meaningful comparison between theory and
experiments requires that electroweak radiative corrections, especially the large effects
introduced by ISR, to e+e− → νν̄γ are taken into account, although the statistical preci-
sion of the direct determination of the invisible width is smaller than the one achieved in



PRECISION PHYSICS AT LEP 69

the measurements of the observables of two-fermion production processes (see ref. [153]
and references therein). Yet, the study of radiative neutrino counting events clearly rules
out the existence of a fourth family with light neutrinos in the SM.

In addition to the number of light neutrinos, there are other derived electroweak pa-
rameters that deserve mention for their rôle in precision tests of the electroweak theory.
From the partial widths of the Z0 into charged leptons, b and c quarks, the τ polariza-
tion asymmetry, the left-right asymmetry as well as the forward-backward asymmetry
in leptonic and heavy-flavour channels, the LEP/SLC experiments determine the vector
and axial-vector neutral current couplings of fermions. These results for the effective Z-
boson couplings gf

V and gf
A make use of the relations between the Z0 parameters and the

couplings themselves given by eqs. (32)-(34) and (35) for the asymmetries and polariza-
tions, and eq. (36) for the partial widths given in Sect. 3

.
1. In particular, the comparison

between electron, muon and tau couplings is in good agreement with lepton universality,
with a precision of about 0.2% for gA and 5 ÷ 10% for gV [8]. Furthermore, since the

forward-backward and polarization asymmetries depend only on the ratio gf
V /gf

A, it is
possible to express the asymmetry measurements in terms of a single parameter given
by the effective weak mixing angle, i.e.

4 |Qf | sin2 ϑf
eff = 1 − gf

V

gf
A

.(133)

The value of sin2 ϑf
eff is flavor-dependent due to the effects of weak vertex corrections

that are non-universal. However, since the most precise results are obtained for the
charged leptons, the mostly quoted value for the effective weak mixing angle coincides
with sin2 ϑl

eff , that allows to combine into a single electroweak parameter all the leptonic
asymmetry measurements.

It is worth pointing out in conclusion that, as a result of the procedure described
in the present Section, the Z0 parameters that are extracted by the LEP experiments
carry dependence on the whole stuff of electro-weak, mixed electroweak/QCD as well
as, for the quantities referring to qq̄ final states, QCD radiative corrections, reviewed
in Sects. 3

.
2-3

.
3. Therefore, these observables can be conveniently used to measure

quantum effects of the electroweak interactions, i.e. to derive interesting constraints on
the SM parameters that enter the predictions via radiative corrections only, noticeably
the top-quark mass mt, the Higgs-boson mass mH and the value of the strong coupling
constant at the Z0 pole αs(MZ). Such an analysis assumes the validity of the SM ab
initio. However, if an appropriate strategy is organized, a model-independent analysis
of the Z0 parameters can be also performed, exploiting the high level of precision of the
data in order to constrain new physics predicted by possible extensions of the SM. The
physical and theoretical implications of the precision measurements of the electroweak
Z0 parameters are discussed in more detail in the following.

4
.
2. Standard Model Fits. – A summary of the most recent measurements of the Z0

parameters obtained by the LEP and SLC experiments is given in Tab. VI. According to
a standard presentation, the data are compared with the SM predictions (third column)
corresponding to a fit of the electroweak data in terms of mt, mH and αs(MZ), that
will be described in more detail in the following. In the fourth column one can also see
the pulls derived from the fit, i.e. the difference between each theoretical result and the
corresponding experimental measurement, in units of the measurement error. A few but
important comments about Tab. VI are in order here.



70 G. MONTAGNA, O. NICROSINI and F. PICCININI

The first remark concerns the precision level reached in the experimental measure-
ments at LEP and SLC. The Z-boson mass MZ is now known with a relative error of
2 × 10−5 (absolute error of ±2 MeV). The total Z0 width and the hadronic peak cross
section are determined with a relative experimental uncertainty of the order of 1 × 10−3

(with an absolute error for ΓZ of around ±3 MeV). All the asymmetry measurements
have an absolute error smaller than 0.01, generally at the level of a few 0.001, and the
effective weak mixing angle is derived with a precision of around ±0.0003. Therefore, in
the light of these numbers, the LEP1/SLC experimental program can be considered as
a great success, being the precision reached better than that expected at the beginning
of operation.

Table VI. – Electroweak data according to the most recent determination (see refs. [7] and [8]).

Quantity Data (Jerusalem ’97) Standard Model Pull

MZ [GeV] 91.1867(20) 91.1866 +0.04
ΓZ [GeV] 2.4948(25) 2.4966 −0.73
σ0

h [nb] 41.486(53) 41.467 +0.36
Rl 20.775(27) 20.756 +0.71
Rb (LEP+SLC) 0.2170(9) 0.2158 +1.38
Rc (LEP+SLC) 0.1734(48) 0.1722 +0.24
Al

F B 0.0171(10) 0.0162 +0.89
Aτ 0.1411(64) 0.1471 −0.93
Ae 0.1399(73) 0.1471 −0.98

Ab
F B 0.0984(24) 0.1031 −1.95

Ac
F B 0.0741(48) 0.0737 +0.09

Ab (SLC direct) 0.900(50) 0.935 −0.69
Ac (SLC direct) 0.650(58) 0.668 −0.31
sin2 θeff (LEP-combined) 0.23199(28) 0.23152 +1.68
ALR → sin2 θeff (SLC) 0.23055(41) 0.23152 −2.37
MW [GeV] (CDF/D0+LEP2) 80.43(8) 80.375 +0.69

1 − M2
W

M2
Z

(νN) 0.2254(37) 0.2231 +0.63

mt [GeV] (CDF/D0) 175.6(5.5) 173.1 +0.45

A second comment regards the level of agreement between theory and experiment.
No significant evidence for departures from the SM predictions is present. Close to the
end of the LEP1/SLC experimental program, the data support the SM in a remarkable
way. Looking at the data in more detail, one could point out that there is an around
2σ deviation of the measured value of Ab

FB with respect to the SM prediction, that
Rb is 1.4σ away from the SM expectation, that the determination of the effective weak
mixing angle from ALR at SLC differs significantly from the LEP average. However,
one should also emphasize that the observed pulls just follow the pattern that can be
expected from a normal distribution of experimental measurements [8, 154]. Moreover,
the disagreement between the measured values of Rb and Rc and their SM expectation,
that received much attention in the past (see for instance ref. [155] and references therein),
has now substantially disappeared. Presumably, future improved measurements of the
Z0 parameters, especially in the b-quark sector at LEP and ALR at SLC, will clarify the
above issues.

Last but not least, the electroweak data contained in Tab. VI, by virtue of their
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Fig. 30. – Data-theory comparison for realistic cross section data. Experimental data from
ref. [156]. Theoretical predictions by TOPAZ0 [111].

high precision, can be used to derive constraints on the top-quark and the Higgs-boson
masses, as well as on the value of αs(MZ), fully exploiting the predictive power of the
SM, as a renormalizable quantum field theory, beyond the tree-level approximation (for
instance, several fits performed by various authors, using older data sets, can be found in
refs. [157–165]). Hence, the sensitivity of the electroweak data to quantum loops elevates
the precision physics to the level of discovery physics. Moreover, the analysis can be
generalized in order to constrain, disfavor or even rule out various extensions of the SM.

Fig. 31. – Data-theory comparison for realistic forward-backward asymmetry data. Experimen-
tal data from ref. [156]. Theoretical predictions by TOPAZ0 [111].

The procedure described above is the one that is commonly adopted by the LEP
experiments. Its main advantage consists in the fact that it allows the extraction of
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parameters (the Z0 parameters) independent of the experimental details and hence easily
comparable from experiment to experiment, both at different machines and energy scales.
Moreover, and as a corollary, the procedure offers the possibility of fitting the unknown
SM parameters by making use of a theoretical machinery which is completely independent
of the experimental selection criteria. On the other hand, it is intrinsically a two-step
procedure, requiring firstly the determination of the Z0 parameters and secondly the
fitting of the unknown SM parameters. It is worth noticing that an alternative but
not antithetic procedure is possible, namely considering as fundamental experimental
quantities the data for the realistic observables (see Sect. 3

.
1), and fitting the unknown

SM parameters directly on them. This last procedure requires the use of theoretical tools
that are able to provide predictions for the realistic observables, taking into account
all the details of the experimental set-up. As a consequence, the required theoretical
framework is sensibly more involved, but on the other hand the procedure is a single-
step one. This last strategy has been used in the past by the LEP Collaborations and
also by other authors [78, 166], yielding results compatible with the outcomes of the
standard procedure. Figures 30 and 31 show the comparison between the experimental
data for realistic cross sections and forward-backward asymmetries of ref. [156] and the
theoretical prediction at best fit performed by TOPAZ0 [111].

4
.
2.1. Determination of the top-quark mass. One the most important recent achieve-

ments in particle physics has been the discovery of the top quark by the experiments
CDF and D0 at the pp̄ collider TEVATRON at FERMILAB in Chicago [167]. The
present average of the mass values reported by the CDF and D0 Collaborations is
mt = 175.6 ± 5.5 GeV [168], with a measured top-quark production cross section in
fairly good agreement with the QCD prediction [169]. The main production mechanism
for the top quark at the TEVATRON is the quark-antiquark annihilation into a gluon
followed by the creation of a tt̄ pair. Due to its short lifetime, the top quark can not
be detected directly but only via its decay products, i.e. the weak decay t → W+b, fol-
lowed by the subsequent leptonic or hadronic W -boson decays W → lν̄l, ud̄. Hence, the
production of the top quark at the hadron colliders gives rise to six-fermion final states
(bb̄ud̄lν̄l, bb̄ud̄dū), as depicted in Fig. 32.

q

q

g

b
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W

W

u
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Fig. 32. – The main production mechanism for the top quark at the TEVATRON, yielding a
six-fermion final state.

The top-quark mass is reconstructed by CDF and D0 measuring the energy and
momenta of the final-state products in the dilepton (where both W decay leptonically)
and lepton-plus-jets (where one W decays leptonically and the other one hadronically)
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events.(4) The large value obtained for mt (the top quark is as heavy as a heavy nucleus)
has as a direct consequence that the total width of this particle depends on the third
power of the mass, reaching the value of about 1.5 GeV for mt ≃ 175 GeV. As said
above, this corresponds to an extremely short lifetime of about 10−24 s, so that the top
quark decays immediately after its formation and tt̄ bound states cannot be formed.

The direct evidence for the top quark in proton collisions and the measurement of
its mass in a range around 170-180 GeV, in agreement with the indirect determination
performed at LEP/SLC, constitutes a striking success for the SM at the quantum level
and a remarkable confirmation of the precision tests of the electroweak interaction at
LEP/SLC. Indeed, although the LEP energy is not sufficient to produce real top quarks,
the effects of this particle and, in particular, of its high mass, can be felt in the precision
measurements, via the radiative corrections induced by the loops containing the top
quark as a virtual particle. In particular, thanks to the high statistics collected at the
Z0 resonance and the leading quadratic dependence of the theoretical predictions on mt,
the mass value of the top quark can be deduced from the virtual effects in electroweak
observables with a precision comparable to the accuracy of the direct measurement.(5)

Since the mass of the top quark is at present known from CDF and D0 with a rather
good precision, it is reasonable to adopt two different strategies in fitting the top-quark
mass from the precision data, namely

• consider all the available electroweak data with the exclusion of the CDF/D0 mea-
surement of mt;

• consider the whole set of data, including mt from CDF/D0.

The former procedure allows to establish whether the estimate of mt from radiative
corrections is in agreement with the direct measurement at the TEVATRON. The latter,
being a more general type of fit, allows to test the overall consistency of the SM in a
more complete way and to obtain the present best estimate of derived quantities such as
the W -boson mass and sin2 ϑeff .

The results obtained according to the above strategies, when fitting the data with
mt, mH and αs(MZ) as free parameters, are summarized in Tab. VII. As can be

Table VII. – Fits to αs, mt and mH (from ref. [8]).

Parameter LEP (incl. MW ) All but MW and mt All data

mt [GeV] 158+14
−11 157+10

−9 173.1 ± 5.4
mH [GeV] 83+168

−49 41+64
−21 115+116

−66

αs(MZ) 0.121 ± 0.003 0.120 ± 0.003 0.120 ± 0.003
χ2/dof 8/9 14/12 17/15

seen from the table, the fitted mass of the top quark is somewhat lower than the direct
measurement, even if in well agreement with it. This compatibility, as already remarked,
is an impressive confirmation of the SM at the level of quantum effects and justifies
combining the direct and indirect derivation of mt. The 1σ errors returned by the fit

(4) Recently CDF employed also the fully hadronic sample, that however gives a less precise determina-
tion of the top-quark mass.
(5) The values quoted for mt refer to the pole mass.
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Fig. 33. – Contour plot showing the top-quark mass mt versus the W -boson mass. The
shaded area shows the SM prediction for the Higgs-boson mass (MHiggs in the figure) between
60 GeV and 1 TeV. The theoretical predictions are performed by means of the codes BHM [136],
TOPAZ0 [111] and ZFITTER [138] (see ref. [7]).

include the uncertainties due to the error on α(MZ) (inducing a mt variation of about
±4 GeV) and to missing higher-order electroweak corrections (affecting mt by about
±1 GeV).

By adopting the procedure of including the direct measurements of mt among the
input data, then typical results obtained are [7, 8]

mt = 173.1 ± 5.4 GeV ,

mH = 115+116
−66 (or mH < 420 GeV at 95% CL),

αs(MZ) = 0.120 ± 0.003.(134)

From this fit, an indirect measurement of the W -boson mass MW can be derived (see
Fig. 33), i.e.

MW = 80.375 ± 0.030 GeV.(135)

This small error of 30 MeV on MW from radiative corrections is clearly a challenge for
future direct precision measurements of MW at LEP2 and at the TEVATRON.
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4
.
2.2. Determination of the Higgs-boson mass. As already shown in Sect. 4

.
2.1, the

electroweak precision data can be used to infer indirect limits on the mass of the yet
elusive Higgs boson. As discussed in Sect. 3

.
2, the leading effect of the Higgs-boson

mass on the observables is only logarithmic and correlated with mt. These difficulties,
associated with other problematic aspects that will be discussed later, naturally set the
question how reliably the Higgs-boson mass mH can be predicted from electroweak data.
Clearly, the answer to this question is of utmost importance for planning the search for
the Higgs boson at LEP2 and future accelerators.
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Fig. 34. – ∆χ2 versus the Higgs-boson mass (see ref. [8]).

The indirect bounds that can be put on mH from radiative corrections effects and
their validity are matter of debate in the community of particle physicists and an unam-
biguous, unique answer to the above question can not be given, especially whenever one
takes into account the large amount of investigations and detailed analyses present in the
literature, many of which appeared after the discovery of the top quark at the TEVA-
TRON [170–181]. Nonetheless, there are aspects concerning the constraints on mH that
are common to most of the analyses of precision data and therefore deserve special men-
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tion. Before entering the details of the discussion, it is worth recalling that negative
searches at LEP put the present lower limit on the Higgs-boson mass mH > 77 GeV at
95% CL, derived assuming the validity of the minimal SM [182,183].

The first common feature concerns the dependence of the fitted central value for mH

and of the 1σ errors on the set of input data considered. This rather strong dependence
can be clearly seen, for example, from Tab. VII, looking at the variations of several
tens of GeV on mH , when considering the LEP data alone, all the available the data
with the exception of MW and mt, and the whole set of data. It has been in particular
emphasized by several authors that the exclusion of the SLD data for ALR moves up mH

considerably, as a symptom of the clash between the sin2 ϑl
eff determination from LEP

and SLC. Actually, the SLD data alone leads to an unnatural bound on mH at the 1σ
level, in conflict with the limit from direct searches at LEP [161,170,184].
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Fig. 35. – ∆χ2 versus the Higgs-boson mass, taking into account the parametric uncertainty on
α(MZ) (from [185]).

A second common feature concerns the effect of including in the fit the theoretical
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uncertainties, both intrinsic and parametric, of the SM calculations discussed in Sect. 3
.
6.

Contrary to mt, that is marginally influenced by missing higher-order electroweak cor-
rections and parametric uncertainties, the upper bounds on mH are sensibly affected
by parametric and intrinsic theoretical errors [179]. For example, the upper bound at
95% CL can vary by around 100 GeV as a result of different implementations of radiative
corrections beyond the one-loop level, so that the χ2 as a function of mH appears as a
band, representing the intrinsic theoretical error of the SM predictions, rather than a
single curve (see Fig. 34).(6) Similar considerations apply to the χ2 distribution as a
function of mH when the input parameter of the fit α(MZ) changes within its error.
This parametric variation is actually larger than the one induced by different treatments
of higher-order effects, pointing out the limitation imposed by the uncertainty on α(MZ)
in a sensible derivation of mH from precision data (see Figs. 35 and 37).
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Fig. 36. – Contour plot showing the top-quark mass (Mtop in the figure) versus the Higgs-boson
mass (MHiggs in the figure). The theoretical predictions are performed by means of the codes
BHM [136], TOPAZ0 [111] and ZFITTER [138] (see ref. [7]).

In the light of the above caveat in establishing a quite precise upper bound on mH ,

(6) The recently calculated two-loop next-to-leading electroweak corrections of the order of G2
µM2

Z
m2

t are
expected to reduce this theoretical uncertainty, provided they are included in the standard electroweak
libraries. Actually, after the completion of this work, the program TOPAZ0 has been upgraded to include
these corrections, together with the results of refs. [106] and [120] concerning QCD and QED corrections,
respectively [146].
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it turns out to be difficult going beyond the conclusion that the electroweak precision
data, even when accounting for the direct measurement of mt, imply an indirect upper
bound at 95% CL of around 400-500 GeV, with a preference for a “light” Higgs boson of
mass around 100 ÷ 150 GeV (see Figs. 36 and 37).

4
.
2.3. Determination of αs. Besides the mass of the top quark and of the Higgs

particle, the precision measurements of the electroweak parameters at the Z0 pole provide
the opportunity of an accurate determination of the coupling constant of the strong
interactions αs. Actually, e+e− machines are an ideal laboratory for QCD studies. Being
the hadronic activity in e+e− collisions restricted to the final state, the measurement of
αs, as well as further tests of QCD, can be carried out in a particularly clean environment,
where the experimental signatures of hadronic events are largely free of backgrounds (see
ref. [186] for reviews on the subject).
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Fig. 37. – Contour plot showing αs(MZ) versus the Higgs-boson mass (MHiggs in the figure).
The theoretical predictions are performed by means of the codes BHM [136], TOPAZ0 [111] and
ZFITTER [138] (see ref. [7]).

Owing to the renormalization group dependence of the strong coupling constant
on the hard energy scale Q (see the discussion in Sect. 3

.
3.2), a reference energy scale

needs to be specified when quoting a value for αs. Because of the large amount of data
collected at LEP1 and SLC, it has become conventional to use Q2 = M2

Z , MZ being the
Z-boson mass, provided that the measured value of αs is run from the scale at which the
measurement takes place to MZ (from now on, αs will be used as a short-hand notation
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for αs(MZ)). This is in turn a great advantage since it allows to compare independent
determinations of αs in different reactions (e+e− annihilation, hadron-hadron collisions
and deep-inelastic lepton-hadron scattering) at different energy scales, covering a range
of Q2 from roughly a few to 105 GeV2. In particular, “low-Q2” and “high-Q2” results
can be compared, thus providing a non-trivial check of the running of αs as predicted
by QCD, and a world-average value of αs, as obtained by averaging all the available
measurements once extrapolated to the Z-boson mass, can be derived.

Fig. 38. – The αs(MZ) values and total errors from measurements at e+e−, lepton-hadron and
hadron-hadron machines, and calculations from lattice QCD. The results are ordered vertically
in
√

Q2.

The data for the electroweak parameters can be used to measure αs according to
two different procedures, i.e.

• performing a fit, with αs as a free parameter, to the single observable given by the
ratio of hadronic to leptonic width Rl;

• performing a global fit to the whole set of the electroweak data (usually including
the direct measurement of mt), by allowing the three parameters mt, mH and αs

or the two parameters mH and αs to vary.

For the inclusive ratio Rl, the QCD corrections are known up to O(α3
s) for massless
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Table VIII. – World averages of αs(MZ)

Value Error Reference

0.118 0.003 ref. [187]
0.118 0.005 ref. [188]
0.118 0.004 ref. [189]
0.119 0.006 ref. [190]
0.119 0.004 ref. [154]
0.119 0.005 ref. [191]
0.119 0.004 ref. [8]

quarks, as discussed in Sect. 3
.
3.2, and the electroweak contributions are well under

control since the main part of the weak radiative corrections, being common to the
leptonic and hadronic Z0 decay channels, cancel in the ratio of partial widths. From the
experimental point of view, Rl, being a ratio, is known with a precision higher than that
of single partial widths and is slightly affected by the luminosity uncertainty. Using the
combined LEP result for Rl the fitted value of αs is [7]

αs = 0.124 ± 0.004(exp.) ± 0.002(mH),(136)

where the experimental error is essentially due to the limited data sample and the the-
oretical error (mH) derives from the residual dependence on mH . It is worth notic-
ing that the extraction of αs from Rl doesn’t require any specific knowledge about the
hadronization mechanism. This αs determination at the Z0 peak is exactly analogous
to the procedure followed when considering the published measurements for the ratio
R = σ(e+e− → hadrons)/σ(e+e− → µ+µ−) at energies below the Z0 resonance. The
value obtained in such a case when fitting αs to R as measured in the energy range
5 ≤ √

s ≤ 65 GeV is [188,192]

αs = 0.128+0.012
−0.013 ± 0.002(mH),(137)

where the second theoretical error is due to the variation of mH in the range 60-1000 GeV.
An example of the second kind of determination of αs from the Z0 line-shape data is

given by the three-parameter fit discussed at the end of Sect. 4
.
2.1, yielding the result [7,8]

αs = 0.120 ± 0.003(exp.).(138)

Detailed analyses of the theoretical uncertainties underlying the above determinations
suggest that they can be estimated to contribute about ±0.002 [193]. Actually, for all the
input observables the non-perturbative effects are expected to be of the order of 1/MZ

and are hence usually neglected.
It should be kept in mind that the results for αs from Z0 data are obtained under

the assumption that the hadronic width Γh is given by the SM. Therefore, a possible
anomaly in Γb is a potential source of bias in the αs derivation.

Besides the above quoted determinations of αs, other measurements performed at
e+e−, lepton-hadron and hadron-hadron machines need to be mentioned for their rele-
vance, together with the calculations from lattice QCD. The interested reader is referred
to the detailed compilations that can be found in refs. [188], [189], [190] and [8], together
with references to the original literature.
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A compilation of αs(MZ) determinations is given in Fig. 38, together with the cor-
responding total error. It is worth noticing that the most precise determination of αs is
obtained from a global fit to the whole set of precision data (Z0 line-shape determina-
tion). By inspection of Fig. 38 it can be seen that there is agreement, within the errors,
between “low-Q2” and “high-Q2” measurements. Contrary to a few years ago, where a
discrepancy between low- and high-energy determinations was observed, the present sta-
tus of αs measurements is quite satisfactory, basically as a consequence of the fact that,
while the αs determination from deep-inelastic scattering and lattice QCD increased, the
precise αs measurement from fitting the electroweak data decreased. The problem of de-
termining a world average of αs has been considered by several authors. In Tab. VIII the
most recent central values and corresponding errors are quoted, together with reference
to the original literature.

4
.
3. Model Independent Approaches and Physics Beyond the Standard Model. –

The possibility of extracting predictions for the mass of the top quark and of the Higgs
boson, as well as for αs(MZ), via the analysis of the electroweak precision data, as
described in the previous sections, relies upon the assumption of the validity of the SM.
In spite of the great success of such a strategy, it is of course important to exploit the
high precision of LEP1/SLC measurements in order to test the validity of the SM in
a way as independent as possible of the details of the underlying theory and, possibly,
to derive also constraints on models of new physics beyond the SM. In order to achieve
these goals, a model independent strategy for the analysis of precision data has to be
organized. In the following, a model independent way of extracting Z0 parameters (the
S-matrix approach) is shortly described. Next, the ε parameterization as a tool for a
model independent analysis of the Z0 parameters is considered. At last, the implications
of precision data for physics beyond the SM are briefly discussed.

4
.
3.1. S-matrix approach. The original idea behind the parameterization of the Z0

line shape introduced in ref. [113,148,149] was to allow a model independent extraction of
the fundamental parameters of the Z0 resonance, such as its mass, width and decay rates.
In the following years this procedure has been posed on a firmer ground by appealing to
the S-matrix theory [194–197]. Within this framework, the scattering amplitude can be
cast into the form of a Laurent expansion around the Z0 resonance as follows [198–200]:

A(s) =
R

s − sp
+

∞
∑

n=0

Bn(s − sp)n =
R

s − sp
+ B0 + O(Γ2

Z/M2
Z),(139)

where the quantities R, sp and B0 are complex numbers. Taking into account that an
overall phase in the amplitude is unobservable, the cross section depends on five real
parameters, which are separately gauge invariant, because the amplitude is an analytical
function of s. The position of the complex pole defines the mass M and the width Γ in
a gauge invariant and process independent way [201–203] through the relation

sp = M2 − iMΓ.(140)

In the expansion given by eq. (139), the photonic contribution to the amplitude is part
of the background denoted by B0. Another approach followed in the literature [204] is to
introduce explicitly the photon exchange contribution according to the parameterization

A(s) =
RZ

s − sp
+

Rγ

s
+ B(s),(141)
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which has been implemented in the computer code SMATASY. In principle the parameter-
ization of eq. (141) may lead to some difficulties related to the fact that the coefficients
Rγ and Bi are not independent quantities [200, 204], but they disappear if a truncated
version is employed. Neglecting terms of the order of Γ2/M2, the cross section for a given
final state can be written in the following form [205]:

σ(s) =
4

3
πα2

[

rγ
T

s
+

srT + (s − M2)jT

(s − M2)2 + M2Γ2

]

,(142)

where rγ
T is the photon exchange term and the parameters rT and jT are related to

the Z-boson exchange residuum and to the γ-Z interference, respectively. On the same
grounds as for the total cross sections, the asymmetries can be characterized around the
Z0 resonance by two parameters [206]:

A(s) = A0 + A1

( s

M2
− 1
)

+ O
( s

M2
− 1
)2

,(143)

with

A0 =
rA

rT
+ O(Γ2/M2),(144)

A1 =

[

jA

rA
− jT

rT

]

,(145)

where rA and jA are the analogues of rT and jT for the numerators of the asymmetries.
In order to allow for a realistic data analysis, the universal effects of ISR need also to be
taken into account, following the procedures described in Sect. 3

.
4 and in Appendix A.

The Z-boson mass and width parameters extracted with the S-matrix approach
described above differ from the commonly defined on-shell Z-boson mass and running
width by two-loop and higher order corrections, resulting in a shift of 34 MeV and 1 Mev
respectively, according to the following expressions [198,207–209]:

M = MZ − Γ2
Z

2MZ
≃ MZ − 34MeV,(146)

Γ = ΓZ − Γ3
Z

2M2
Z

≃ ΓZ − 1MeV.(147)

Taking into account of the proper definitions, the Z-boson mass and width obtained
by fitting the data with the S-matrix formalism are in agreement with those obtained
within the SM, showing its internal consistency, even if the error on the Z-boson mass is
larger in the S-matrix approach, because the γ-Z interference is a free parameter. The
fact that the γ-Z interference is sizeable off peak can be used to reduce the error on the
parameter jhad

T . Actually, by adding to the peak results also data above and below the
resonance, the values obtained from such an analysis are MZ = 91.1882 ± 0.0029 GeV
and jhad

T = 0.14±0.12 [8]. These values are to be compared with MZ = 91.1867±0.0020
from the standard analysis, and jhad

T = 0.22 as the SM expectation.

4
.
3.2. Model-independent analysis of precision data. Since new physics effects can

be more easily disentangled in the analysis of the Z0 parameters if not obscured by our
ignorance of SM parameters, it is convenient to introduce variables that are as free as
possible from large mt effects and hence sensitive to new physics. This attitude is fol-
lowed in the model independent approach proposed and further developed in ref. [210],
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where the validity of the SM is not assumed ab initio and appropriate variables (the ε
parameters) are defined in order to provide an efficient parameterization of the most im-
portant electroweak data with respect to the sensitivity to new physics. More specifically,
four independent quantities, indicated as ε1, ε2, ε3 and εb, are introduced in one to one
correspondence with the observables MW /MZ , Γl, A

l
FB (assuming lepton universality)

and Γb, that are chosen as primary defining measurements of the ε parameters. From
these input data, the strategy consists in isolating the key quantities ∆ρ, ∆rW , ∆k, εb,
that, as discussed in Sect. 3

.
2, are the dominant effects in weak radiative corrections

due to gauge bosons self-energies and vertex corrections to the Zff̄ coupling. Indeed,
the four quantities ∆ρ, ∆rW , ∆k, εb, whenever calculated in the SM, are dominated, for
sufficiently large top-quark mass values, by quadratic terms in mt of the order of Gµm2

t .
In particular, ∆rW is connected to ∆r defined by eq. (56) in Sect. 3

.
2 according to

the definition (1 − ∆r) = (1 − ∆α)(1 − ∆rW ), in such a way that the running of α
(α(MZ) = α/(1 − ∆α)) due to known physics is extracted from ∆r. Furthermore, εb is
introduced in order to take care of the important non-oblique corrections to the Z → bb̄
vertex discussed in Sect. 3

.
2. The explicit relations between the primary defining observ-

ables and the ∆ρ, ∆rW , ∆k, εb factors can be found in the original literature [210, 211].
Since the aim, as already stressed, is to provide a parameterization unaffected as much
as possible by the relative ignorance of mt, it is convenient to keep ∆ρ (ε1 = ∆ρ) and εb

and introduce, in place of ∆rW and ∆k, the two following linear combinations

ε2 = c2
0∆ρ +

s2
0∆rW

c2
0 − s2

0 − 2s2
0∆k

,

ε3 = c2
0∆ρ +

(

c2
0 − s2

0

)2
∆k,(148)

where s2
0 is an effective weak mixing angle containing only photon vacuum polarization

effects, given by

s2
0c

2
0 =

πα(MZ)√
2GµM2

Z

, c2
0 = 1 − s2

0.(149)

In this way, contributions of the order of Gµm2
t do not enter ε2 and ε3, that contain

only logarithmic terms in mt. Quadratic top-quark mass effects are confined in ε1 and
εb. Furthermore, the leading logarithmic terms for large Higgs-boson mass are contained
in ε1 and ε3. For instance, the leading expressions for the ε parameters within the SM
can be written as [210,211]

ε1 =
3Gµm2

t

8π2
√

2
− 3GµM2

W

4π2
√

2
tan2 ϑW ln

(

mH

MZ

)

+ . . .

ε2 = −GµM2
W

2π2
√

2
ln

(

mt

MZ

)

+ . . .

ε3 =
GµM2

W

12π2
√

2
ln

(

mH

MZ

)

− GµM2
W

6π2
√

2
ln

(

mt

MZ

)

+ . . .

εb = − Gµm2
t

4π2
√

2
+ . . .(150)

Finally, the relations between the defining observables and the εi can be inverted in order
to get the formulae for the εi in terms of the data. The explicit formulae read as follows

ε1 = −0.9882 + 0.011963 Γl/MeV − 0.1511 x,
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Fig. 39. – Electroweak precision data versus theory in the ε1-ε3 plane (from ref. [154]; see also
refs. [210,211]).

ε3 = −0.7146 + 0.009181 Γl/MeV − 0.69735 x,

εb = −0.62 ε1 + 0.24 ε3 + 0.436 (Γb/Γb0 − 1) ,

ε2 = 1.43 ε1 − 0.86 ε3 + 0.43 ∆rW ,(151)

where x = gV /gA = 1 − 4(1 + ∆k)s2
0 and Γb0 is the value of Γb in the limit when all the

ε’s are neglected.
The parameters ε1, ε2 and ε3 can be directly related to the variables S, T and U , that

are other quantities proposed in the literature in order to parameterize the oblique correc-
tions [212] and widely employed for model-independent studies of electroweak data [213].
However, while S, T and U are defined as deviations with respect to the SM predic-
tions for specified values of mt and mH , the ε parameters are defined with respect to a
reference approximation that is independent of mt, in such a way that they are exactly
zero in the SM in the limit of neglecting all pure weak loops [210]. Moreover, it is worth
noticing that the definitions for the ε parameters are quite general because they do not
refer to any particular model. Therefore, they are useful since they allow to perform a
model-independent analysis of the electroweak precision data.

As a first step of such an analysis, it is possible to derive 1σ contours for the ε
parameters by using the minimal set of data given by MW /MZ , Γl, Al

FB and Γb. To
include additional observables in the ε’s analysis, further assumptions are required in
order to maintain a consistent definition of the parameters. However, under appropriate
hypotheses, the analysis can be generalized to include all the observables measured on
the Z0 peak, supplemented with low-energy electroweak measurements. The results
obtained from the data can be then compared with the SM predictions, as a function of
mt and mH , obtained by using computational tools that contain the state-of-the-art of
radiative corrections. Examples of such a procedure are given by Figs. 39-40. From the
comparison between theory and experiment in a given εi − εj plane, it is possible with
the present data to draw a number of significant conclusions. First, a preferred range for
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Fig. 40. – The same as in Fig. 39 in the εb-ε3 plane (from ref. [154]; see also refs. [210, 211]).
The effects of the errors on α(MZ) and αs(MZ) are also shown.

the top-quark and the Higgs-boson masses can be inferred, according to a strategy that is
different from what has been described in previous sections. Referring to the most recent
data (with the TEVATRON result for mt excluded from the analysis), one can see a
preference of the precision data for a “light” Higgs boson and a mt value somewhat lower
than the CDF/D0 determination. These conclusions on mt and mH corroborate the
results obtained from SM fits discussed in Sects. 4

.
2.1 and 4

.
2.2. Second, it is possible to

observe a good agreement between the full SM predictions and the data. Noticeably, one
can point out a strong evidence for pure weak radiative corrections, since the beautiful
agreement between data and theory can not be simply explained in terms of an improved
Born approximation based on tree-level SM plus QED and QCD corrections. This very
important conclusion demonstrates by itself the constraining power of precision physics
at LEP. The latter has been also emphasized by some authors that have studied the
sensitivity of the data to a very peculiar subset of weak radiative corrections, namely the
pure bosonic loops involving trilinear gauge-bosons and Higgs couplings [172]. As shown
by these investigations, the LEP1/SLC data are so precise that they require the inclusion
of such corrections in the SM calculation in order to precisely fit the data. Therefore,
the present LEP1/SLC precision data feel the electroweak non-abelian couplings that are
presently measured at LEP2 [184].

4
.
3.3. Physics beyond the Standard Model. As already stressed, the main virtue

of the ε parameterization is that they can be rather easily calculated in extensions of
the SM, and therefore can be used to analyze models of new physics in the light of
precision data. Typical examples studied in the literature are technicolour models [214],
models with an extended gauge group [215,216] and the Minimal Supersymmetric Standard
Model [217]. Also specific analyses within specific models of new physics beyond the SM
have been considered in the literature, for instance concerning models with an extended
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Higgs sector [218–221] or models with extra fermionic generations [222, 223]. The main
conclusions of such analyses are summarized in the following.

Concerning technicolour models, it can be said that they tend to produce, in their
typical realizations, corrections to the ε parameters (large and positive to ε3, large and
negative to εb) that are disfavored by the data [224]. In short, simple technicolour
models are basically disfavored by LEP experiments [225], even if they can not be ruled
out completely since particularly sophisticated versions with non trivial behaviour under
the electroweak group could avoid their typical bad consequences [226].

As far as models with an extended gauge group are concerned, the case of the simplest
models with an extra U(1) (and with an associated new neutral vector boson) has been
addressed in the literature [227]. For such a situation, two new parameters have to be
introduced, the former being a mixing angle ξ in order to define the mixture of the
standard and the new neutral vector bosons, the latter being the shift δρM induced at
the tree-level in the ρ parameter by the above mixing. Considering the class of models
based on E6 and for the left-right symmetric model, the main implication of precision
data is that very strong constraints on ξ and δρM can be deduced. In particular, the
amount of mixing allowed is very small, less than, say, 1%. It is worth observing that,
in recent years, models containing an extra Z ′ boson with enhanced hadronic or almost
vanishing leptonic couplings (hadrophilic or leptophobic Z ′) received particular attention
as candidate models able to explain the simultaneous anomaly of Rb and Rc data (see
for instance ref. [155]). At present, the Rb-Rc anomaly has substantially disappeared,
but anyway these model have not been completely ruled out by the new data, and could
be tested at LEP2 [228].

The Minimal Supersymmetric Standard Model (MSSM) deserves a special discussion
since it is the most predictive framework beyond the SM. However, because of the very
high number of free parameters, a convenient strategy when confronting theory and
experiment is restricting to consider two limiting cases (the so-called “heavy” and “light”
MSSM) rather than attempting a direct fit to the data. The “heavy” MSSM implies all
supersymmetric particles to be sufficiently massive. In this limit, the MSSM predictions
for electroweak data essentially coincide with the results of the SM with a light Higgs
boson, say, lighter than 100 GeV [229]. Therefore, this particular realization of the MSSM
can nicely accomodate the LEP data essentially in the same way as the SM does. In the
“light” MSSM the masses of some of the superparticles are nearby their experimental
lower limit. For such realization, the pattern of radiative corrections differs from that
of the SM, with peculiar effects in vacuum polarization diagrams and Z → bb̄ vertex,
that can be easily incorporated in the ε’s [230]. These peculiar effects are reviewed in
some detail in [231]. In particular, it is possible to find mechanisms able to explain a
possible departure (if real) of Rb from the SM [232]. In conclusion, the MSSM agrees
well with precision electroweak data, since it doesn’t give rise, both in its “heavy” and
“light” realizations, to effects that are inconsistent with the LEP measurements. This
is due to the particular nature of the MSSM as new physics model that doesn’t alter
significantly the structure of the SM. This positive outcome of precision physics at LEP
pointing towards supersymmetric extensions of the SM is corroborated by independent
investigations of the MSSM with respect to the electroweak data performed in [160].
In these papers, instead of analyzing the MSSM implications on the data in terms of ε
parameters, a more orthodox approach has been followed, namely a complete calculation
of electroweak precision observables has been carried out, using one value for the Higgs-
boson mass and tan β, together with the set of SUSY soft breaking parameters fixing
the chargino/neutralino and scalar fermion sectors. In this kind of analysis, an optimal
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set of SUSY parameters can be extracted from a global fit to the data, showing how
supersymmetry can consistently describe precision data without contradicting present
limits from direct search on its mass spectrum (see Fig. 41).
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Fig. 41. – Experimental data normalized to the best fit results in the SM and MSSM (from
ref. [160]).

Other specific models analyzed in the light of the LEP/SLC data concern the ex-
tension of the Higgs-boson sector. In the minimal SM the tree-level masses of the vector
bosons are linked by means of the weak mixing angle through the relation ρ = 1, with

ρ =
M2

W

M2
Z cos2 ϑW

.(152)
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Since the Higgs-boson sector has not yet been tested with high accuracy, it is interesting
to investigate a possible extension of the SM adopting an enlarged scalar sector. The
simplest way to do this, by changing the tree-level expression of ρ, is to introduce, in
addition to the minimal doublet representation, a Higgs-boson triplet with a vacuum
expectation value different from zero in the neutral sector. In this case the masses of
the vector bosons are no more related by the weak mixing angle, and the ρ parameter
deviates from unity already at the tree level according to the following form:

ρtree =

∑

i v2
i (I2

i − I2
3i + Ii)

∑

i 2v2
i I2

3i

,(153)

where Ii(I3i) is the weak isospin (third component) of the i−th Higgs-boson multiplet,
and vi the respective vacuum expectation value. In addition to the standard Higgs boson,
other Higgs particles belong to the physical spectrum. The scenarios arising in non
minimal standard models with Higgs-boson triplets has been studied in refs. [218–220].
The calculation of the radiative corrections to precision observables within these non
minimal models requires not only the evaluation of the extra loop diagrams involving the
non standard Higgs bosons, but also an extension of the renormalization procedure. Due
to the fact that the bare W - and Z-boson masses are not linked through the weak mixing
angle, a fourth input data is necessary in order to perform the relative subtraction. In
other words the ρ parameter is not calculable as in the minimal standard model but
need to be fixed by a renormalization condition. The procedure has been discussed in
ref. [51] within the MS scheme using the physical W -boson mass as the fourth data
point, in addition to α, Gµ and MZ . Recently, the radiative corrections to the full set
of LEP1 electroweak observables have been calculated in a triplet model with a neutral
Higgs boson and a pair of charged Higgs particles in addition to the standard Higgs
boson [221]. The adopted renormalization framework is an extension of the on-shell
scheme, where the fourth input data has been chosen to be the effective leptonic mixing
angle at the Z0 resonance. The interesting result of this study is that for a variation
of the top-quark mass in the range mt = 175 ± 6 GeV, the predictions of the SM and
of the triplet model are practically indistinguishable. As far as the Higgs-boson mass
dependence is concerned, while the SM has a preference for a heavy Higgs boson from
the observable ΓZ and for a light Higgs boson from the mixing angle measurement, in
the triplet model a light Higgs particle is compatible with all precision observables.

Models with extra fermion generations have been also investigated. As previously
discussed, one of the achievements of the LEP experiments is the determination of the
number of light neutrinos (Nν = 2.993 ± 0.011) and hence of the number of fermionic
generations. However, the theory does not exclude the presence of new sequential quark-
lepton generations with heavy neutral leptons, whose production would be kinematically
forbidden at LEP. The experimental lower bounds on the masses of the hypothetical
new fermions available in the literature (including LEP1.5 data) are of about 60 GeV
for the leptons and 100 GeV for the quarks [222]. In the literature, the indirect bounds
obtained through the study of their effects on radiative corrections for LEP1 electroweak
observables [222,223] have been examined. A large mass splitting between the members
of the doublets would spoil the agreement with the precision data, so the new heavy
fermions should be almost degenerate in mass within a doublet. In order to reduce the
number of parameters, a reasonable assumption is to work with quarks and leptons of
equal masses. Within this scenario, the effect of one new generation can be compensated
by increasing the fitted value of the top-quark mass. An analysis based on older data
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sets shows that only at most two new sequential generations are allowed [222]. However,
as a general caveat, it should be noticed that new experimental data, both from LEP2
and the TEVATRON, could modify this scenario. Considering the effects of electroweak
vacuum stability and the absence of a Landau pole in the Higgs-boson potential allows
to put upper bounds on the masses of the new fermions, depending on the scale at
which new physics will appear. In the case of absence of new physics up to the grand
unification scale, the upper bounds on the masses of the fourth generation are of the
order of 100 GeV, a value viable for LEP2 direct searches [222].

As a last comment, it is worth pointing out that the present precision electroweak
data coming from the LEP analysis can be used to derive constraints on the structure
of a grand unified theory (GUT). In particular, within standard GUT’s the evolution of
the gauge couplings starting from the scale given by the Z-boson mass MZ does not lead
to the unambiguous identification of a grand unification scale. Viceversa, such a grand
unification scale can be identified within the framework of supersymmetric GUT’s [233].
This is at present considered as an indication of new physics beyond the SM, and in
particular of supersymmetry [154].

5. – Physics at LEP2

As discussed in the Introduction, the ALEPH, DELPHI, L3 and OPAL experiments
at LEP terminated in the fall 1995 their data taking at energies around the mass of the
Z0 resonance. After a short run at intermediate energies (the so-called LEP1.5 phase),
the collider enters a new phase of operation far away the Z0 peak, namely in the range√

s ≃ 161 − 192 GeV. The energy upgrade of the LEP machine offers the possibility of
exploring a new energy regime for electron-positron collisions, beyond the threshold of
W -pair production (see Fig. 42). The precision measurements of Z-boson properties at
LEP1/SLC can be therefore completed by the experiments at LEP2 with the precision
determination of the W -boson properties. In addition to the precision physics of the W
boson, experiments at LEP2 will continue to perform tests of the Standard Model (SM) in
two-fermion production processes and in photonic final states, search for the Higgs boson,
perform QCD studies as well as explore direct new physics signals [15]. Actually, as can be
clearly seen from Fig. 42, there are at LEP2 many interesting processes with measurable
cross sections, such as e+e− → f f̄ , e+e− → γγ, e+e− → νν̄γ, e+e− → W+W−, ZZ, the
latter yielding four-fermion (4f) final states.

In the present section, the processes of main interest for precision studies of the
electroweak theory at LEP2 are examined. The two-fermion production processes and
radiative events are discussed, pointing out new physics aspects with respect to LEP1.
The physics of the W boson in 4f production processes is then addressed, with particular
emphasis on the status of theoretical predictions as well as first experimental results. The
search for the SM Higgs boson in 4f final states is finally discussed.

5
.
1. Two-Fermion Processes. – Although LEP2 was mainly conceived to measure

precisely the properties of the W boson through the production of W pairs in e+e−

collisions, the processes of quark and lepton pair production, still remaining among the
most copious reactions at LEP2, is an important physics item. In this new energy
regime, the two-fermion processes can be used to perform further tests of the SM, with
enhanced sensitivity to the electroweak interference, as well as to obtain limits on possible
extensions of the SM, such as the existence of new Z ′ bosons or effective 4f contact
interactions [235]. However, the de-convoluted cross sections for these processes are
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Fig. 42. – Standard Model cross sections at LEP (from [234]).

typically of the order of 10 pb in the LEP2 energy regime, i.e. three orders of magnitude
smaller than the cross sections for the same processes at LEP1. Therefore, even when
considering the highest final integrated luminosity expected at LEP2, i.e. 500 pb−1 [236],
it will be possible to measure the two-fermion observables with a statistical error of
the order of 1%, to be compared with the corresponding 0.1% of LEP1. Nonetheless,
in order to meaningfully compare theory and experiment, precise predictions are still
demanded and, therefore, radiative corrections need to be known with a good precision
and incorporated in the theoretical calculations. To this aim, it is worth noticing that
at LEP2 new aspects in the sector of radiative corrections to two-fermion processes do
appear with respect to LEP1, noticeably [234]

• weak boxes (i.e. diagrams containing WW and ZZ internal lines) are at the level of
a few per-cent of lepton and hadron cross sections, and hence no longer negligible
as at LEP1;
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• initial-state radiation (ISR) of hard photons is not inhibited as around the Z0

peak, where, as discussed in Sect. 3
.
4, the Z-boson width ΓZ acts a natural cut-off;

consequently, hard-photon bremsstrahlung corrections become numerically relevant
at LEP2.

The phenomenon of the so-called Z0 radiative return constitutes the main man-
ifestation of the relevance of hard-photon radiation in two-fermion production above
the Z0 peak. It corresponds to the emission of very energetic photons that reduce the
two-fermion effective centre of mass (c.m.) energy back to the Z-boson mass, and con-
siderably enhance the cross section. Actually, one can observe an increase of about a
factor of four in the total rate of two-fermion events at LEP2, between the tree-level and
the QED corrected predictions. This effect directly arises from the dependence of the
two-fermion cross section on the c.m. energy, when going from LEP1 to LEP2. Actually,
the Breit-Wigner behaviour for

√
s ≃ MZ , followed by a fast 1/s decrease after it, makes

very likely the production of a f f̄ pair with invariant mass mff̄ clustered around MZ ,
accompanied by the emission of a real photon carrying away the residual energy. In fact,
the photon energy spectrum shows a pronounced peak around the value (1−M2

Z/s)
√

s/2,
corresponding to those events (LEP1-like events) with an effective c.m. energy after ISR
of

√
ŝ ≃ MZ (Z0 radiative return) .

The above comments are referred to s-channel annihilation processes. As far as
large-angle Bhabha scattering is concerned, it is worth noticing that already some GeV
off-resonance the cross sections is dominated by t-channel photon exchange. Hence, large-
angle Bhabha scattering at LEP2 is much more similar to small-angle than to large-angle
Bhabha scattering at LEP1 (see ref. [18] for a detailed discussion).

5
.
1.1. Weak corrections. As already discussed in Sect. 3

.
2, the one-loop pure weak

corrections to e+e− → γZ0 → f f̄ arise from those diagrams that involve corrections to
the vector boson propagators, from the set of vertex corrections (with the exclusion of
the virtual photon contributions that are accounted among the QED effects) and from
the box diagrams containing the exchange of two massive gauge bosons. In fact, the
box diagrams where at least one boson is a photon are classified as belonging to the
QED corrections simply because they are IR divergent and need to be combined with
the photonic initial-final state interference in order to get a meaningful result. Therefore,
the genuine weak boxes are those with two W - and Z-boson propagators. Differently
from the propagators and vertex corrections, they are ultra-violet finite in any gauge
but the unitary one, where they actually give rise to UV infinities. Moreover, weak
boxes introduce, in addition to s, a dependence on the scattering angle, that makes
the parameterization of weak corrections in terms of “running” (s-dependent) effective
couplings, successfully employed at LEP1, no longer viable at LEP2. In fact, since the
box diagrams are negligibly small around the Z0 pole, any dependence on the scattering
angle can be neglected in the calculation of pure weak effects around the peak. Off
resonance, i.e. in the LEP2 energy regime, the weak boxes become relevant corrections,
due to the natural appearance of WW and ZZ thresholds. Therefore, they are actually
included as relevant short-distance effects in the theoretical predictions for two-fermion
physics above the Z0 peak.

In order to make some quantitative statements on the effects of weak boxes on two-
fermion observables, it is necessary to remember that the contribution of weak boxes is
not gauge invariant by itself. It follows that a sensible evaluation of these corrections,
as well as a comparison of their size as obtained from different computational tools
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based on different theoretical framework, can not be carried out unless a gauge-invariant
procedure of subtraction of weak boxes (the so-called de-boxization) is introduced. A
possible procedure has been proposed in ref. [234]. Denoting the correction due to the
WW box diagrams by BWW (ξ) as computed in a general Rξ gauge, then BWW (ξ) can
be split as

BWW (ξ) = BWW (1) +
(

ξ2 − 1
)

∆(ξ).(154)

In ref. [234], in order to get an estimate of the effect of weak boxes at LEP2, it was
agreed to subtract from the full one-loop theoretical prediction BWW (ξ = 1). This
contribution at LEP1 is of the order of 10−4 and its evaluation far from the peak can
give an idea of the numerical effects introduced by the weak boxes at LEP2. The effect
of weak boxes, as defined above, has been evaluated for the most relevant two-fermion
processes (e+e− → µ+µ−, uū, dd̄, bb̄, hadrons) and for several c.m. energies. The main
conclusion of this analysis, based on the predictions of different tools such as TOPAZ0,
ZFITTER and WOH (see Sect. 3

.
5), is that the weak boxes introduce a significant relative

correction of the order of a few per cent, especially around the WW threshold and at the
highest LEP2 energies. In particular, for σµ the effect is positive, of the order of 1-2% at√

s = 161 − 175 GeV and negative, of the order 1% at 205 GeV; for σhad the correction
is positive at

√
s = 161 GeV, of the order of 1%, negative and around 3% and 4% at

175 and 205 GeV, respectively. For the muon forward-backward asymmetry the effect of
weak boxes is within 0.01.

5
.
1.2. QED corrections. Because of the overwhelming effect due to ISR in the LEP2

energy regime discussed above, some contributions associated to the emission of hard
photons that are irrelevant at LEP1 play a new rôle far above the Z0 peak. Actually,
the soft-photon dominance in the ISR mechanism emphasized in Sect. 3

.
4 for the energy

region around the Z0 resonance ceases to be valid at LEP2, and previously negligible
hard-photon bremsstrahlung effects, both at the leading and next-to-leading level, show
up. This implies the need for an upgrade in the treatment of QED corrections with
respect to LEP1, since the numerical impact of the new corrections is typically at the
1% level and hence significant in view of the LEP2 experimental precision.

The first example of such effects due to hard-photon bremsstrahlung is given by the
O(α) NLO corrections arising from the emission of a hard acollinear photon by the ini-
tial state, because hard collinear photons are already taken into account by the leading
logarithmic (LL) prescriptions (see Appendix A). Since these corrections are strongly af-
fected by the imposed experimental cuts and can be very difficultly cast in a fully analytic
form, one can evaluate their size by performing an exact O(α) perturbative calculation,
integrating it numerically and depurating the final result of the universal LL as well as
of the non-leading (process dependent) soft+virtual corrections [237]. This procedure
allows to isolate and quantify in a clean way the effect of hard-photon contributions in
O(α) ISR. The results of such an analysis can be found in ref. [237] for typical event
selections (ES’s) adopted by the LEP Collaborations, namely

• only a cut on the invariant mass of the event after ISR; this matches the ES adopted
by recent analyses of hadron and lepton-pair production by the LEP Collaborations
at LEP1.5 and LEP2 energies;

• fermion acceptance (40◦ ≤ ϑ− ≤ 140◦) and acollinearity (acoll=10◦, 25◦) cuts in
association with an invariant mass one.
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Fig. 43. – The theoretical error of the “Z0-peak recipe” for the µ pair production cross section
(relative deviation), as a function of the invariant mass cut xcut defined by s′ > xcuts, s′

being the invariant mass of the final-state fermion pair after ISR. The results correspond to two
acollinearity cuts, for the same angular acceptance cut. The arrows point at xcut = M2

Z/s.

For the second ES, the results are shown in Figs. 43 and 44. They refer to four c.m.
energies:

√
s = MZ (as a test case), 140, 175 and 190 GeV. In all the cases, the final

state considered is µ+µ−.

Whenever a s′ cut alone is imposed in the data analysis (that in practice coincides
with what is done by the LEP Collaborations above the Z0 peak), O(α) non-leading hard-
photon corrections are compatible with zero for hadronic and leptonic cross sections, and
negligible at the 10−3 level for the lepton asymmetry. This applies both to loose and
tight s′ cuts, i.e. including or excluding the events with Z0 radiative return. Therefore,
for such typical ES’s, those LEP1 calculations accounting for soft plus virtual NLO
terms only (Z0-peak recipe) can be safely extrapolated at higher energies without loss
of accuracy. For more complicated ES’s (see Figs. 43 and 44), including an acceptance
and acollinearity cut, the theoretical error due to the neglect of the O(α) non-leading
hard-photon terms can grow up to about 2.5% for the cross section and to 1 × 10−2

for the forward-backward asymmetry. However, if the Z0 radiative return is cut away,
the above theoretical error is limited to 0.3% relative deviation for the cross section and
3× 10−3 absolute deviation for the forward-backward asymmetry, that are acceptable in
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Fig. 44. – The same as in Fig. 43 for the forward-backward asymmetry (absolute deviation).

the light of the LEP2 experimental precision [237].

The second example of hard-photon contributions damped at LEP1 but no longer
negligible at LEP2 comes from the IS second-order non-leading corrections and third-
order LL contributions. The former arise from the configurations where a hard photon
is radiated off in the direction of incoming electron or positron in association with a
large-angle, acollinear additional hard photon, and provide corrections of the order of
α2L. The latter are due to the emission of three hard photons collinear to the colliding
leptons, originating terms of the order of O(β3). The O(α2L) non-soft effects are exactly
known from explicit perturbative calculation of the ISR spectrum [117]. They can be
easily included in the radiator or flux function (see Appendix A) in such a way that
the exact O(α2) calculation for an inclusive cross section is reproduced. The LL O(β3)
contributions, being universal photonic effects, can be kept under control employing one
of the algorithms described in Appendix A. Referring in particular to the structure
function (SF) method, these LL O(β3) corrections are known for the electron SF [119,
238, 239] as well as the radiator [118, 120], both in factorized and additive form. It
has to be noticed that the O(α2) non-leading non-soft corrections are in principle of
the same order of magnitude as the third-order LL O(β3) corrections. Therefore, a
careful evaluation of the effects induced by higher-order hard-photon corrections in the
LEP2 energy regime necessarily requires that both the contributions are simultaneously
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Fig. 45. – The effect of O(β3) and O(α2L) corrections on the e+e− → µ+µ− total cross section
as a function of the s′ cut (see ref. [120] for more details).

included in the theoretical predictions. The interplay between O(α2L) and O(β3) effects
for the QED corrected muon-pair cross section, as a function of the s′ cut defined as
s′/s ≥ xcut, is shown in Fig. 45. The relative deviations with respect to the cross section
computed by means of a standard additive radiator with up to O(α2) LL hard-photon
corrections (σ2) are shown for several c.m. energies. As can be seen, both the O(β3)
(upper window) and NL O(α2) (lower window) corrections amount to a contribution
of several 0.1% when the Z0 radiative return is included, but they tend to compensate
one another, being of the same order of magnitude but of opposite sign. When the Z0

radiative return is excluded, or close the Z0 resonance, the NL O(α2) corrections are
confined at the level of 0.01-0.02%, whereas the O(β3) ones remain at the level of 0.05-
0.1%. More precisely, the inclusion of the NL O(α2) plus O(β3) corrections above the Z0

peak causes a reduction of the QED corrected muon-pair cross section of about −0.1%
when the Z0 radiative return is excluded and an enhancement of about 0.25% when it is
included. In the case of the hadronic cross section the effect of enhancement is around
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Fig. 46. – Data-theory comparison for two-fermion production cross sections at LEP. The
experimental data can be found in [156] (on peak) and [240] (

√
s > 130 GeV). The theoretical

prediction is performed by TOPAZ0 [111].

0.4%, i.e. comparable with the expected experimental precision for such an observable.
The theoretical predictions for cross sections and forward-backward asymmetries of

two-fermion processes, as obtained by means of the code TOPAZ0 including all the weak
and QED corrections discussed above, are compared with experimental data and shown
as functions of the c.m. energy in Figs. 46 and 47, respectively.

5
.
1.3. Radiative events. As already discussed in Sect. 4, the study of single photon

production in the process e+e− → νν̄γ has been exploited at LEP1 as an alternative
method for the determination of the invisible Z-boson width. At LEP2, the radiative
processes, both with one and more final-state visible photons, still remain an important
physics item, but within a different framework [234,241]. For instance, they are used as
QED or SM tests or, more generally, as tools to investigate physics beyond the SM. As a
general feature, all these processes at LEP2 are affected by an error which is dominated
by statistics and is of the order of some per cent. This in turn implies that a theoretical
knowledge of the cross sections with a theoretical error of the order of one per cent is
mandatory, thus requiring the inclusion of all the phenomenologically relevant radiative
corrections.

The process e+e− → nγ, n ≥ 2, is well suited for testing QED. Actually, it is
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Fig. 47. – Data-theory comparison for the e+e− → µ+µ− and e+e− forward-backward asymme-
tries at LEP. The experimental data can be found in [156] (on peak) and [240] (

√
s > 130 GeV).

The theoretical prediction is performed by TOPAZ0 [111].

marginally affected by weak or strong corrections, whose amount is below 1%. Since it
provides a particularly clean signature, it can also be used to probe models predicting
the existence of excited leptons or contact interactions. At present, the data-theory
comparison confirms pure QED [242].

The production of single radiative events in the SM is dominated by the process
e+e− → νν̄γ, with a sizeable background of radiative Bhabha events with the electrons
lost. All these events manifest themselves as a single visible photon accompanied by
missing transverse momentum (/p⊥). It is worth noticing that, at a difference from the
LEP1 case where the radiative photon is essentially soft, at LEP2, due to the phenomenon
of the Z0 radiative return discussed above, the observable photon is essentially a very
energetic one, and thus easily taggable (see Fig. 48). Standard computational tools
employed by the LEP Collaborations for the evaluation of the SM cross sections are
described in refs. [132], [244] and [243]. These events can also be used to probe processes
beyond the SM, such as production of neutralino-pairs or excited neutrinos. Moreover,
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Fig. 48. – The energy spectrum of the observed photon at LEP1 and LEP2 energies. Numerical
results by NUNUGPV [243].

they are in principle sensitive to WWγ anomalous couplings (see Sect. 5
.
3.2 for more

details). Typical examples of new physics are the following:

• in the framework of the Minimal Supersymmetric Standard Model (MSSM), with
R-parity conservation and the neutralino χ0

1 as the lightest supersymmetric particle
(LSP), the process of interest is e+e− → χ0

1χ
0
1γ [245];

• in the framework of the so-called “no scale supergravity model” [246], the neutralino
χ0

1 should be visible through its radiative decay into a photon and a gravitino G̃,
χ0

1 → γG̃, so that the process of interest is e+e− → γG̃G̃.

Unfortunately, both the processes are hardly detectable because of their too low rate.
Actually, at present the data analyses do not point out any anomaly with respect to the
SM predictions [247].

A radiative process that received particular attention during the last months is
e+e− → γγ + /p⊥. Actually in the MSSM, such signatures could be produced by the
process e+e− → χ0

2χ
0
2 → γγχ0

1χ
0
1, where χ0

2 is the next-to-lightest neutralino decaying
radiatively into χ0

1γ. In the framework of the “no scale supergravity model”, instead,
the process of interest is e+e− → χ0

1χ
0
1 → γγG̃G̃. At present there is no evidence for

physics beyond the SM, and the data are used to put constraints on the masses of the
supersymmetric particles [247].
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5
.
2. Four-Fermion Processes. – As discussed in Sect. 5

.
1, two-fermion production

processes certainly are an important physics item at LEP2, but the true novelty is rep-
resented by the processes involving the production of W -boson pairs (and their back-
grounds), that at LEP2 energies are kinematically accessible with cross sections com-
parable to the ones typical of two-fermion production. The study of W -boson pair
production can add information concerning two important items of the SM, namely the
determination of the W -boson mass [248] and the structure of the triple gauge-boson
couplings [249].

At LEP1, given the set of input parameters α, Gµ and MZ (see Sects. 3 and 4 for
more details) all the other observables can be derived within the SM. In particular, the
W -boson mass MW satisfies the relation (see eq. (61))

Gµ =
απ√

2M2
W (1 − M2

W /M2
Z)

1

1 − ∆r
,(155)

which is essentially the SM prediction for the muon decay. In eq. (155), ∆r represents the
radiative corrections to the tree-level matrix element, and hence depends, in particular,
on the top-quark and Higgs-boson masses, mt and mH . At LEP2, the W -boson mass
is measured and therefore eq. (155) becomes a constraint that, via ∆r, correlates mt

and mH to one another. Of course, the more precise is the knowledge of the W -boson
mass, the stronger is the resulting constraint, which can eventually shed light on the
Higgs-boson mass.

Concerning the triple gauge-boson couplings, within the SM they have a specific
form determined by the underlying SU(2) ⊗ U(1) symmetry. Any departure from such
a specific form (anomalous couplings) is in general responsible of a bad high-energy
behaviour of the cross sections, spoiling the renormalizability of the theory. As a matter
of fact, at LEP2 energies an observable very sensitive to anomalous couplings is the
angular distribution of the W bosons in W -pair production.

In order to exploit the experimental information as a stringent test of the SM, it
is clear that one needs reliable theoretical calculations of the various W -pair production
observables. It is also clear that the best knowledge is mandatory, i.e. the observables
should be computed taking also into account all the relevant radiative corrections.

e-

e+

γ , Z

W

W

e-

e+

W

W

νe

Fig. 49. – The tree-level Feynman diagrams for on-shell W -pair production.

A first step in this direction consists in calculating the cross section for W -pair
production in the so called narrow-width (NW) approximation, i.e. assuming that the
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W -boson width is zero and hence the W bosons are stable particles (see Fig. 49). A huge
amount of work along this direction has been performed in the past [250–252], and today
the process of on-shell W -pair production is known together with its full O(α) radiative
corrections.

On the other hand, the W bosons are, as well known, unstable particles, so that
the effect of their finite width is in principle important, especially around the threshold
region. Actually, whereas the cross section for the production of two real W bosons is
exactly zero below

√
s = 2MW , when the effect of the finite width is taken into account

the cross section must become non-zero also below
√

s = 2MW , due to the possibility
of producing off-shell W ’s which subsequently decay (see Fig. 50). Moreover, the W
bosons, being unstable, can be only intermediate states of the reactions, the true final
states being four-fermion (4f) states. This in turn implies that, for a given 4f final
state, besides the processes concerning the production and decay of a W -boson pair, one
has to consider also those processes that lead to the same final state, but via different
intermediate states (background processes).

Fig. 50. – The effect of the finite W -boson width on the inclusive cross section.

The above comments point out the need of going beyond the NW approximation,
both in order to obtain reliable cross sections and to study all the details concerning the
W -boson decay products.
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5
.
2.1. Tree-level calculations. A first attempt in the direction of taking into account

finite-width effects can be found in the approach described in ref. [253]. If one is inter-
ested in inclusive W -boson decays, then the total cross section can be approximatively
factorized into two stages, namely off-shell W -boson pair production times their decay,
as follows:

σ(s) = Bf1f̄2
Bf3f̄4

∫ s

0

ds1ρ(s1)

∫ (
√

s−√
s1)

2

0

ds2ρ(s2)σ0(s, s1, s2).(156)

In eq. (156) σ0(s, s1, s2) represents the total cross section for the production of two
W bosons with squared masses s1 and s2, respectively (the Feynman diagrams of the
production process at the tree level are still given in Fig. 49). Its explicit expression can
be found in ref. [253]. Bfaf̄b

is the branching ratio for the decay channel W → faf̄b.
ρ(si) is the weight factor describing the inclusive decay of a W boson of squared mass
si. It takes into account that the W bosons are produced off-shell and hence, rigorously
speaking, they must be described by a propagator. The explicit expression of ρ(s) is the
following

ρ(s) =
1

π

√
sΓ(s)

(s − M2
W )2 + M2

W Γ(s)2
,(157)

where Γ(s) is the total W -boson decay width. Equation (156) is a very simple and
effective approximate description of the physics of W -pair production. Also, the main
factorizable QED initial-state corrections to it have been considered in the literature and
can be found in refs. [254–256]. On the other hand, its main limit is that it can provide
at most double-differential spectra, namely the combined invariant mass distribution of
the W bosons. If one is interested in the full description of the final-state products, a
complete 4f calculation is mandatory.

A natural extension of eq. (156) to the description of a full 4f final state can be
obtained by considering the diagrams of Fig. 51, where the W bosons are the interme-
diate states of the reaction and hence the full dynamical information on the final-state
fermions is contained. The diagrams considered constitute the so called CC03 class,
and describe the full 4f process in the so called double-resonant approximation. The
complete calculation of the matrix elements corresponding to them, together with the
appropriate four-body phase space, allows one to go beyond the “off-shell production
times decay” approximation of eq. (156), and obtain the fully differential description of
the process.

On the other hand, as already observed in Sect. 5
.
2, a given 4f final state can

be obtained also via other sub-processes. For instance, if one considers a semi-leptonic
channel, i.e. a channel in which one W -boson decays into hadrons and the other one
into leptons, and restricts himself to those channels that do not have electrons in the
final state, then the same final state as in Fig. 51 can also be generated by the diagrams
of Fig. 52. These diagrams (background diagrams), together with the ones of Fig. 51,
constitute the so called CC11 class, and are characterized by having a single W boson
in the intermediate state, so that they are single-resonant. Of course, the full matrix
element for such a final state is the sum of all the diagrams, and the squared matrix
element includes also the interferences between double- and single-resonant diagrams.

In the presence of electrons in the final state, the situation is more involved. Actually,
the full matrix element receives contributions also from additional t-channel diagrams,
so that the total number of diagrams becomes 20 (the so called CC20 class).
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Fig. 51. – The tree-level Feynman diagrams for the CC03 class.

A full classification of the various Feynman diagrams contributing to a give 4f final
state goes beyond the aims of the present paper. The interested reader is referred to
refs. [234,257,258], and references therein, for a more detailed account. Here it is worth
noticing that for particular final states, for instance fully hadronic final states, also neutral
current (NC) and QCD backgrounds appear and become relevant.

The calculation of the scattering amplitudes for 2 → 4 processes is, already at the
tree level, considerably more involved than the corresponding calculation for 2 → 2
processes, typical of LEP1/SLC physics. There are two main reasons for this, namely
the fact that a single Feynman amplitude for 2 → 4 is algebraically more involved and
the fact that, typically, for a given final state there are much more Feynman diagrams
contributing. The calculational techniques adopted in the literature can be classified as
follows:

• helicity-amplitude techniques: in this approach, the scattering amplitude for a given
process, and for a given helicity pattern of the initial- and final-state fermions,
is computed analytically as a complex number by exploiting the formal prop-
erties of the spin projection operators; the squared modulus of the amplitude
is then computed numerically; the approach, in all its actual implementations
(see refs. [259–262] and references therein), is particularly powerful for massless
fermions, albeit also mass effects can be taken into account;

• automatic calculations: these approaches adopt both standard techniques for the
evaluation of the squared matrix element [263] and the helicity amplitude formal-
ism for the evaluation of the scattering amplitude [264], properly interfaced with
software packages that render the calculation of cross sections almost automatic;

• numerical evaluation of the generating functional for the connected Green’s func-
tions: it is a new method, presented in ref. [265], in which the scattering amplitude
is computed numerically by means of an iterative algorithm starting from the effec-
tive action of the theory and with no use of Feynman diagrams; it becomes strongly
competitive with respect to standard techniques as the number of final-state par-
ticles becomes larger and larger.

5
.
2.2. Gauge invariance. Being in the framework of a gauge theory, as is the case

of the SM, means that the calculations of physical observables must be gauge invariant,
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Fig. 52. – The additional eight tree-level Feynman diagrams for the CC11 class. Notice that in
the semi-leptonic case (e+e− → ud̄µ−ν̄µ, for instance) the additional diagrams are seven; in the
fully-leptonic case (e+e− → τ+ντµ−ν̄µ, for instance) the additional diagrams are six.

or at least the gauge violations have to be confined well below the required theoretical
accuracy. In the case of 4f final states there are two sources of problems connected with
gauge invariance in theoretical calculations (for a review see for instance ref. [266]).

The first one originates when the matrix element of the process is calculated consid-
ering only a subset of the Feynman diagrams contributing to the scattering amplitude.
For example, in the case of W -boson production, the natural extension from the on-shell
approximation to the more realistic off-shell production and subsequent decay would be
the calculation of the three Feynman diagrams of the on-shell case with the two final-
state fermionic currents attached to the virtual W -boson lines, i.e. the double-resonant
diagrams of Fig. 51. In ref. [250] it has been shown that from the evaluation of the double-
resonant diagrams in an axial gauge, gauge dependent terms arise, which exhibit a single
pole structure in either of the two invariant masses and are cancelled when also the single-
resonant diagrams (see Fig. 52) contributing to the process are evaluated. The single-
and the non-resonant contributions are generally suppressed by a factor ΓW /MW ≃ 2.5%
with respect to the double-resonant ones, but they need to be taken into account in view
of the required theoretical accuracy.

Even when the calculation of all the tree-level diagrams contributing to a given 4f
final state is performed, the problem of gauge invariance is not yet solved because of the
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presence of singularities in the phase space due to the massive gauge boson propagators,
which display poles at p2 = M2, p2 being the invariant mass of the decay products of the
unstable bosons. These singularities are cured by the introduction of the finite widths of
the gauge bosons, which shift the poles away from the real axis. However, in field theory
the widths arise from the imaginary parts of higher-order diagrams describing the gauge
boson self-energies, resummed to all orders. So the tree-level amplitude is supplemented
with only a subset of higher-order contributions and this can destroy the gauge invariance
of the calculation.

A pragmatic approach, suitable for the construction of a lowest-order event gen-
erator, is the so called “fixed-width scheme”, where the propagators 1/(p2 − M2) are
systematically replaced with 1/(p2 −M2 + iΓM) also for space-like momenta. This pro-
cedure has no physical motivation, because the propagator for space-like momenta does
not develop any imaginary part. An improvement on this is the “running-width scheme”,
where the width is a function of p2, equal to zero for space-like momenta, in agreement
with the calculation of the imaginary part of the gauge boson self-energy.

Since the resonant diagrams are not gauge invariant by themselves, both of the above
mentioned schemes violate gauge invariance, and their reliability needs to be checked by
a truly gauge invariant scheme, even if it cannot be uniquely defined. In the literature
several gauge restoration schemes have been studied. The simplest one is the “fudge-
factor scheme” [267, 268], which amounts to calculate the matrix element without any
width (so that the calculation is manifestly gauge invariant) and introduce an overall
factor of the form (p2−M2)/(p2−M2+iΓM) for every singularity, in order to transform it
in a resonance. The problem connected with this scheme is that when the double-resonant
diagrams are not dominant, as is the case of charged current processes at energies below
and at the W -pair production threshold, it can lead to large deviations [269].

Another possibility is the “pole scheme” [198, 270–272], where the complete ampli-
tude is decomposed according to the pole structure in gauge invariant subsets of double-,
single- and non-pole terms. Introducing the widths in the pole factors does respect gauge
invariance. At present there is some debate about the correct way of implementing this
scheme and about its validity in the vicinity of thresholds. Since the pole scheme is a
gauge invariant decomposition of the amplitude according to its degree of resonance, it
can be used as a starting point for the evaluation of higher-order corrections, as will be
discussed in Sect. 5

.
2.3.

The most theoretically appealing solution to the gauge invariance problem is the
“fermion loop scheme” [269, 273–275], where the minimal set of one-loop Feynman dia-
grams necessary for compensating the gauge violation caused by the self-energy graphs is
included in the calculation. Since the lowest order decay widths of the gauge bosons are
given by the imaginary parts of the fermion loops in the one-loop self-energies, accord-
ing to this scheme the imaginary parts of all the other possible one-particle-irreducible
fermionic one-loop corrections must be included. For the process e+e− → 4f , after the
resummation of the vector boson self-energies, the only left out contributions are given
by the imaginary parts of the fermionic corrections to the triple gauge-boson vertex,
which have been calculated in ref. [274] in the limit of massless fermions. The calcula-
tion has been extended in ref. [275] to take into account the complete fermionic one-loop
corrections, including real and imaginary parts, and all contributions of the massive top
quark.

Due to the complexity of the fermion loop scheme, the CPU time needed for the
calculation of the cross section increases considerably with respect to the one performed
within the fixed or running width scheme, based on a naive treatment of the bosonic



PRECISION PHYSICS AT LEP 105

widths. For this reason, from a phenomenological point of view, it is important to quan-
tify the amount of gauge violating effects in 4f processes of interest at LEP2. As a
result of the detailed investigations pursued in refs. [274, 275], the violations connected
with the gauge group SU(2) are not relevant in the LEP2 energy range. They become
important for energies reached at the next generation of linear colliders. The case of
U(1)e.m. gauge invariance violation is different, since the effects are enhanced by a factor
of O(s/m2

e) in processes with an electron or positron in the final state, almost collinear
to the incoming particle [268, 269, 273, 274]. This happens, for instance, for the CC20
process e+e− → e−ν̄eud̄, which is particularly important for studying triple gauge-boson
couplings. In ref. [274] it has been shown that the running width scheme for this pro-
cess gives a totally wrong result when the minimum scattering angle of the electron is
set to zero, unless it is improved with the fermionic corrections to the trilinear gauge
boson coupling. On the other hand, the fixed width scheme, which does not violate the
electromagnetic current conservation, gives reliable results. It is worth noticing that the
results for the total cross section, obtained by means of different methods respecting
current conservation, agree to O(Γ2

W /M2
W ). In the limit q2 → 0, where q2 represents

the space-like momentum transfer of the electron through the photon, the fermion loop
correction to the standard Yang-Mills vertex can be written in the following factorized
form [274]:

Cfl = 1 + i
γW (p2

+)

p2
+ − p2

−
,

where

γW (q2) =
ΓW

MW
q2, q2 ≥ 0,

γW (q2) = 0, q2 ≤ 0,

and p± are the squared momenta flowing in the W±-boson propagators. This approxi-
mate factorized prescription can be easily implemented in a Monte Carlo event generator.
However, the validity of the above formula is limited to the LEP2 energy range.

As a last comment, it is worth noticing that the problems connected with U(1)e.m.

gauge invariance in the CC20 processes are rendered much more mild when a cut on the
scattering angle of the outgoing electron is imposed. For a realistic cut of 10◦ the results
obtained with the fixed width scheme are compatible with the ones obtained with the
fermion loop corrections [274].

5
.
2.3. Radiative corrections. As already discussed in Sect. 5

.
2, the main physical

motivations of the LEP2 experiments are a precise determination of the W -boson mass
and the study of the triple gauge-boson couplings. Since in the LEP2 energy range the
integrated cross section is not very sensitive to the presence of anomalies in the Yang-Mill
sector, the angular distributions are the best suited observables for the determination of
the anomalous couplings. For this reasons the radiative corrections to both total and
differential cross sections should be under control. Moreover, as will be illustrated in
Sect. 5

.
3.1, one of the methods used for the W -boson mass measurement (the direct

reconstruction method) relies upon the knowledge of the energy loss due to ISR defined
as

< Eγ >=
1

σtot

∫

dEγ
dσ

dEγ
Eγ ,(158)
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which requires the best possible control of photonic radiative corrections. The other
method (the threshold method) requires a good knowledge of the total cross section
in the threshold region, i.e. a total cross section including all the relevant radiative
corrections. However, it should also be kept in mind that, given the limited statistics of
the LEP2 experiments with respect to LEP1, a theoretical relative accuracy of the order
of 1% at the W -pair production threshold and of 0.5% at higher energy will be enough.

Before discussing various aspects of radiative corrections to 4f processes, it is worth
recalling the rôle played by the W -boson mass at LEP2 with respect to the situation of
LEP1. As already pointed out, in this last case it is an observable calculated by means of
the input parameters α, Gµ and MZ , and, with the inclusion of the radiative corrections
to the µ decay, MW shows a parametric dependence on mt, mH and αs, as results from
eq. (61). In the case of LEP2 it is more natural to consider MW as a free parameter to be
fitted by the experiments. As a consequence, eq. (61) can be solved with respect to mtop

as a parametric function of αs and MH , to be compared with the direct measurement
from the TEVATRON [8,276], allowing for a stringent determination of the Higgs-boson
mass.

Turning now the attention to LEP2 processes, the ideal situation would be the knowl-
edge of the complete set of O(α) radiative corrections to processes with four fermions
in the final state, but at present the calculation, due to its complexity, is not available.
In fact, such a task would require the calculation of O(103 ÷ 104) one-loop diagrams. It
is important to notice that, due to the presence of charged vector bosons in the Born
amplitude, a separation between virtual photonic and pure weak corrections respecting
the SU(2) gauge invariance is not possible. Anyway a class of dominant corrections im-
portant for LEP2 physics can be singled out, and the effects of non-leading terms can be
estimated relying upon the knowledge of the full one-loop electroweak corrections for the
reaction e+e− → W+W−, where the charged gauge bosons are considered in the on-shell
limit [251, 252], including the bremsstrahlung process e+e− → W+W−γ [277]. Since
the exact O(α) calculation, already for on-shell W ’s, leads to complicated and lengthy
expressions in terms of twelve s- and t-dependent effective couplings, the possibility of
constructing an Improved Born Approximation in the LEP2 energy range has been stud-
ied [278], with the aim of providing simple and transparent formulae to be eventually
implemented in Monte Carlo’s for off-shell W -pair production.

Considering the realistic case of 4f production, in the following a brief account
is given on the state-of-the-art about the three main classes of radiative corrections of
interest for LEP2 physics: weak, QCD and QED corrections.

As already pointed out, at LEP2 the W -boson mass MW should be a fitting param-
eter. By simply adding it to the three data points used as input parameters at LEP1 (see
Sect. 3

.
2.2) leads to a four data points scheme, based on α, Gµ, MZ and MW , that is

overcomplete, so that one of the typical LEP1 input parameters has to be replaced with
MW . Considering eq. (61) with ∆r = 0, at least two tree-level schemes are possible:

s2
W = 1 − M2

W

M2
Z

,

g2 = 4
√

2GµM2
W ,

and

s2
W =

πα√
2GµM2

W

,
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Fig. 53. – The contribution of various radiative corrections. The left window shows the
cross section for the channel e+e− → µ−ν̄µud̄ at the tree level (dashed line) and includ-
ing ISR (dash-dotted line), the coulombic correction (dotted line) and naive QCD correc-
tions (continuous line). The right window shows the relative effect of each correction.
∆σ/σ is defined as (σISR − σBorn)/σBorn for the dashed line (the relative effect of ISR),
(σISR+COUL.−σISR)/σISR for the dotted line (the relative effect of the Coulomb correction) and
(σISR+COUL.+NQCD −σISR+COUL.)/σISR+COUL. for the dash-dotted line (the relative effect of
naive QCD corrections). Numerical results produced by WWGENPV [279].

g2 =
4πα

s2
W

.

However, for practical calculations, the leading universal weak effects can be absorbed
in the tree-level calculations by defining the input parameters in terms of Gµ and α(s).
This choice, applied to the second scheme, is the one adopted in [258].

Going beyond this phenomenological attitude, it is necessary to talk about a com-
plete one-loop calculation. By adopting the fermion loop scheme, all one-particle irre-
ducible fermionic one-loop corrections are included, and a theoretically appealing strategy
in this direction would be to calculate the remaining bosonic corrections, at least within a
suitable approximation. The pole scheme [198,270,271] offers such a framework, provided
that the c.m. energy is sufficiently far away from the threshold region (a few W -boson
widths above). Actually, as stated in Sect. 5

.
2.2, this scheme is gauge invariant, contains

the corrections for the production and decay of on-shell bosons as building blocks, and
the number of Feynman diagrams to be evaluated is considerably reduced with respect to
the complete set, because the potentially relevant corrections in the LEP2 energy region
are given by the ones affecting the double-resonant diagrams. However, a simpler ap-
proximate procedure to take into account the leading bosonic corrections in the on-shell
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W ’s limit has been recently suggested [280], which amounts to perform the substitution

Gµ → Gµ/(1 + ∆ySC
bos),

with ∆ySC
bos = 11.1 ·10−3. This replacement is equivalent to use the SU(2) gauge coupling

g(M2
W ) at the high energy scale of MW , defined by the theoretical value of the radia-

tively corrected leptonic W -boson width, g2(M2
W ) = 48πΓW

l /MW .(7) The essence of the
approach is to use ΓW

l instead of Gµ as input parameter, and it has been checked to
work well in the case of on-shell W -pair production, providing results with an accuracy
better than 1% with respect to the full one-loop results. Moreover, in ref. [280] it has
been shown that strong cancellations occur between fermionic and bosonic corrections,
at least at the level of on-shell W -pair production. Since the same behaviour can be
reasonably expected also in the case of off-shell W -pair production [275], these results
confirm that the fermionic loop contributions to e+e− → 4f need to be completed with
some approximation of the bosonic corrections.

As far as the W -boson mass determination by the threshold method is concerned, it is
worth mentioning a specific bosonic correction arising from the exchange of a relatively
light Higgs boson between the slowly moving W bosons. Given the presently allowed
range of variation for the Higgs-boson mass, it induces a theoretical uncertainty on the
total cross section near the threshold of W -pair production. In the limit mH ≪ MW the
leading behaviour in the on-shell case is given by [283]

δσ ≃ α

2s2
W

MW

mH
σBorn.

In ref. [284] this correction has been computed for off-shell W -boson production neglect-
ing the s-channel vertex contributions, due to the dominance of the ν exchange diagram
at threshold. For an Higgs-boson mass of 60 GeV the correction amounts to about
0.8 − 0.9% and decreases for higher Higgs-boson mass values (being less than 0.1% for
mH = 300 GeV). This effect translates into an uncertainty on the determination of MW

of 15 MeV from the LEP2 threshold run.
Concerning QCD corrections, when at least two quarks are present in the final state,

i.e. in semileptonic and fully hadronic channels, also the strong radiative corrections to
the 4f processes have to be considered. In the case of an inclusive set-up and in the
CC03 approximation, the QCD corrections amount to use the QCD corrected values of
the total and partial W -boson widths in the cross section. These have been calculated in
the literature [285] and can be expressed in factorized form by the following replacements:

ΓWuidj
→ ΓWuidj

(

1 +
αs

π

)

,

ΓW → ΓW

(

1 +
2αs

3π

)

.

The impact of QCD corrections on the angular distribution of the decay products of a
W boson and their application to the on-shell W -pair production has been discussed
in ref. [286]. The QCD corrections for the inclusive set up and in the double-resonant

(7) The full one-loop electroweak and QCD corrections to the decay width of the W boson have been
calculated in ref. [281]. An Improved Born Approximation absorbing the bulk of the radiative corrections
can be obtained by writing the lowest order width in terms of Gµ and MW [282].
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approximations can be used as estimates of the corrections for more realistic cases. For
this reason the above replacements are referred to in the literature as naive QCD correc-
tions. The quality of the approximation when cuts on the jet directions are imposed has
been discussed in ref. [287]. The effect of naive QCD corrections on the cross section of
a typical 4f process is shown in Fig. 53.

Recently the exact O(αs) corrections to semileptonic and hadronic processes have
been calculated [288] and compared with the naive approximation both in a fully inclu-
sive situation and in the presence of ADLO-TH cuts [258]. The differences are below
the foreseen experimental error at LEP2 for the semileptonic channels, while for fully
hadronic final states the naive approach can give unreliable results. The analysis has
been performed also at a c.m. energy of 500 GeV, typical of future e+e− linear colliders,
where the naive approximation deteriorates at the percent level for NLC/TH cuts [289].

Concerning at last QED corrections, in principle they should consist of the virtual
photonic corrections and the real-photon bremsstrahlung in order to have an infrared
safe result. A separation between initial- and final-state radiation respecting the U(1)
electromagnetic gauge invariance, as in the case of LEP1 s-channel processes, is not
possible because the ν-exchange diagram involves a non-conserved charge flow in the
initial state. The problem is circumvented if the treatment of electromagnetic radiation
is restricted at the LL level. The first theoretical calculations taking into account such
effects in 4f productions can be found in refs. [290–296]. In this case the enhanced
logarithmic terms coming from final-state radiation (FSR) cancel by virtue of the KLN
theorem (when sufficiently inclusive cuts are considered) and the initial-state corrections
reveal the presence of infra-red and collinear singularities, which are process-independent.
Being phenomenologically relevant, these can be resummed to all orders by means of one
of the methods described in Appendix A. Given the steep slope of the born cross section
in the threshold region, the numerical effect of ISR is to reduce the cross section by
several percent (see Fig. 53), depending on the c.m. energy [254]. By means of various
procedures (for instance the variation of the scale in the LL theoretical predictions) it
is possible to state that the overall accuracy of the LL QED corrections is of the order
of 1%. Another possible way of estimating non-leading QED effects is the one followed
in ref. [297], where a gauge invariant definition of ISR is given according to the current
splitting technique. The electrically neutral neutrino of the t-channel diagram is split
into two oppositely flowing charged leptons. One of them is attributed to the initial state
to build a continuous charge flow, while the other one is attributed to the final state. In
this way the O(α) ISR form factor for s-channel processes used at LEP1 (see eq. (106))
is recovered, plus non-factorizing terms numerically small in the LEP2 energy range.

However, when aiming to study the impact of exclusive photon radiation on partic-
ular observables, such as the photon spectrum or the differential angular distributions of
final-state particles in the presence of realistic experimental cuts, some improvements on
the LL approximation have to be introduced. For example, in ref. [279] the transverse
degrees of freedom of emitted photons have been introduced by means of the pT depen-
dent SF approach, in order to take into account the kinematical effects of the photonic
radiation from all external charged particles. Alternatively, in ref. [298] the exclusive
photonic contributions, including also multiple photon radiation from the W bosons,
are implemented by means of a O(α) YFS exponentiation. In this formulation the O(α)
corrections are implemented using the results for W -pair production in the on-shell limit.

In addition to the LL effects, a particularly sizeable photonic correction in the W -
pair production region is the so-called Coulomb singularity (see Fig. 54). It originates
from the electromagnetic interaction between the slowly moving W ’s. This effect is
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Fig. 54. – The Feynman diagrams for the Coulomb correction.

known since a long time [299] for stable particles to give a correction factor δσCoul of the
form

δσCoul =
πα

2β
σBorn,

where β =
√

1 − M2
W /E2 represents the velocity of the W bosons. The off-shellness and

the width of the W bosons modify radically the Coulomb interaction because they act
as an effective cut off on the range of the electromagnetic interaction. Only for high
enough energies, such that the typical interaction time between the W ’s is smaller than
the W -boson lifetime, the effect derived for stable particles is substantially unchanged.
In terms of Feynman diagrams the Coulomb singularity arises from three- and four-point
scalar functions contained in the graphs with a photon line connecting the two virtual
W bosons (see Fig. 54). Being the coefficients of these scalar functions gauge invariant,
they can be worked out to give the following correction factor to the lowest order cross
section resulting from the double-resonant diagrams [300]:

δσCoul = σCC03
Born

απ

2β̄

[

1 − 2

π
arctan

( |βM − β̄|
2β̄ImβM

)]

,

with

β̄ =
1

s

√

s2 − 2s(k2
+ + k2

−) + (k2
+ − k2

−),

βM =

√

1 − 4M2

s
, M2 = M2

W − iMW ΓW − iε.

where k+, k− are the four-momenta of the W+ and W−, respectively. By performing
the on-shell limit on this formula the correction factor for stable particles is recovered.
Higher-order effects due to the Coulomb correction are unimportant [300]. Numerically
the Coulomb singularity amounts to a correction of the order of 6% at threshold and
decreases smoothly to about 2% at

√
s = 190 GeV (see Fig. 53).

The QED corrections discussed above are phenomenologically relevant, gauge-inva-
riant and include, besides the exponentiation of LL contributions, part of the full O(α)
electroweak corrections. The natural development is to consider the remaining non-
leading O(α) corrections. As stated previously, a step towards the calculation of the
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bosonic contributions to the O(α) radiative corrections to 4f processes can be performed
within the pole scheme [198,270,271], even if this gives reliable results only a few ΓW ’s
above the W -pair production threshold. In the threshold scan the required theoretical
accuracy is, on the other hand, more relaxed with respect to the high energy points.
Given the dominance of the double-resonant diagrams in the LEP2 energy region, a good
approximation is to consider the radiative corrections in the double pole approximation.
These can be divided in factorizable and non-factorizable corrections (see Fig. 55 for an
example of non-factorizable virtual QED corrections).

e-

e+

W

f1

f2

W

f3

f4

γ
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W
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f4

γ

Fig. 55. – Examples of Feynman diagrams for non-factorizable virtual QED corrections.

The former contain manifestly two resonant W -boson propagators and can be dis-
tinguished between corrections to W -pair production and decay, while the latter do not.
At present, the factorizable corrections to e+e− → 4f can be taken into account by using
the known O(α) corrections for on-shell W -pair production and decay. This is a first
reasonable approximation to the full one-loop calculation, since the neglected terms are
of the order of αΓW /πMW . This approach has been already followed in ref. [298]. Re-
cently, the effects of non-factorizable QED diagrams in the soft-photon limit have been
investigated [301–305]. As a result of this calculations, the non-factorizable corrections
vanish in the case of initial-final state interference, and in all cases when the integrations
over both invariant masses of the virtual W bosons are performed. Hence the W -boson
production angle is insensitive to these corrections, so that the studies of anomalous triple
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gauge-boson couplings at LEP2 are not affected by them. The case of the W -boson in-
variant mass distribution is different, since it receives a relative contribution of the order
of 1%. The same corrections vanish for ZZ-mediated and ZH-mediated 4f processes.

5
.
2.4. Computational tools. As done in Sects. 2

.
4 and 3

.
5, for small-angle Bhabha

scattering and Z0 physics, respectively, the basic features of the computer codes available
for the calculation of observables of 4f production processes are briefly summarized. The
aim of the discussion is to show how the theoretical results described in Sects. 5

.
2.1 and

5
.
2.3 are in practice implemented in computational tools used for the experimental analy-

sis of W -pair production at LEP2. Since, as it will be discussed in Sect. 5
.
4, Higgs-boson

physics at LEP requires the study of 4f final states, some of the programs developed for
W -boson physics at LEP2 can provide also predictions for Higgs-boson production and
decay. The goal of this discussion is to make an inventory of the theoretical approaches
to the problem and of their realizations in the form of FORTRAN codes, rather then to give
an exhaustive description of the programs. For a more detailed account of the programs,
the reader is referred to refs. [258, 306, 307], and to the authors of the packages for the
most recent developments.

The most of the 4f codes developed for LEP2 are Monte Carlo programs. Indeed,
since the phase-space integration over the 4f final state involves seven dimensions, it can
be more efficiently performed, especially in the presence of arbitrary kinematical cuts,
by means of standard or adaptive Monte Carlo techniques. However, other numerical
algorithms are available in the literature. For instance, semi-analytical programs, where
a number of phase-space variables is integrated analytically, ending with two integrations
over invariant masses (see eq. (156)) to be performed numerically, and deterministic tools
have been developed. In particular, semi-analytical codes are useful as benchmark for
the Monte Carlo’s and for fitting purposes. Independent of the particular numerical
algorithm employed, variance reduction techniques (such as importance sampling) are
demanded and used in practice in order to take care of the peaking behaviour of the
integrand.

Although different in many theoretical and technical aspects, most of the programs
include the following common ingredients, necessary to match the LEP2 experimental
precision (see the discussion in Sect. 5

.
2.3):

• the full or the numerically relevant set of Feynman diagrams for the processes
e+e− → 4 fermions;

• ISR in the collinear approximation, usually in the form of QED SF’s;

• Coulomb correction;

• QCD corrections, in the naive realization, to the total and partial W -boson widths;

• possibility of anomalous couplings (see Sect. 5
.
3.2);

• interface to hadronization packages.

Some codes implement additionally QED FSR from fermionic legs. A few programs
generate pT -carrying photons, at the level of ISR and/or FSR, while others are able
to calculate the matrix element for the radiative process e+e− → 4f + γ. Finally,
some programs include one or more of the gauge restoration mechanisms discussed in
Sect. 5

.
2.2.
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ALPHA [265] — This program is based upon an original theoretical algorithm recently
proposed in the literature [265], and particularly powerful for the treatment of processes
with a high number of final-state particles. Differently from all the other 4f codes, ALPHA
computes automatically the tree-level 2 → 4 scattering amplitudes without making use
of Feynman diagrams, but computing iteratively the saddle point of the path integral for
given external momenta. All 4f final states can be treated. It can be used to predict the
rate for the radiative process e+e− → 4f + γ [308].
CompHEP 3.0 [263] — It is a package of symbolical and numerical modules giving in
output cross sections and distributions for processes with up to five particles in the final
state, with a high level of automation. It uses the BASES&SPRING package for adaptive
Monte Carlo integration and unweighted event generation. All 4f and 4 fermions +
1 photon final states can be treated. ISR is implemented using SF’s in the collinear
approximation.
ERATO [309] — It gives results for any 4f final state, using the “E-vector” formalism for
the calculation of the 2 → 4 helicity amplitudes [259]. ISR in the collinear approximation
and QCD corrections are allowed. A qualifying feature of ERATO is the incorporation of
all CP conserving anomalous couplings. The fermion-loop scheme as gauge restoration
mechanism is active. The program is a Monte Carlo that can run as an event generator
and as an integrator. It has been interfaced to JETSET/HERWIG.
EXCALIBUR [310] — It is a Monte Carlo integrator that can give predictions for all possible
4f final states (excluding Higgs-boson exchange), with the possibility of selecting the
contributions of subsets of diagrams and of particular spin configurations. The helicity
amplitudes are computed using the Weyl-van der Waerden formalism [260]. ISR in the
collinear approximation, Coulomb and QCD corrections, as well as anomalous couplings,
are available.
GENTLE/4fan 3.0 [311] — It is a semi-analytical package designed to compute selected
4f production cross sections and invariant mass distributions for CC and NC mediated
processes. SM Higgs-boson production in the NC case is included. All final states that
do not contain identical particles, electrons or electron neutrinos can be studied. ISR in
the collinear approximation is available both in the radiator and SF approach. Moreover,
non-universal QED corrections to some classes of diagrams can be included. Coulomb
and QCD corrections, as well as anomalous couplings, are implemented.
grc4f [312] — It is a Monte Carlo generator for all 4f final states automatically generated
by the package GRACE [313]. All relevant radiative corrections and anomalous couplings
are supplied. In particular, QED radiation is implemented by means of SF’s for ISR, but
a QED PS (QEDPS) [314] is also available both for ISR and FSR. Fermion masses can be
kept nonzero everywhere. The numerical Monte Carlo integration and event generation
is performed with the help of the package BASES&SPRING. Interface to hadronization is
provided.
KORALW 1.03 [315] — It is a Monte Carlo that can treat any 4f final state via an in-
terface to the GRACE library. All the phenomenologically relevant radiative corrections,
anomalous couplings and interface to JETSET are provided. In particular, ISR is for-
mulated according to the YFS exclusive exponentiation, thereby including the effect of
transverse photon momenta, while FSR is treated within the SF approach. Recently,
O(α) non-leading QED corrections have been implemented [298] using the known results
for on-shell W -pair production.
LEPWW [316] — This generator contains the CC03 and NC02 tree-level diagrams, supple-
mented with O(α) ISR and FSR treated according to the package PHOTOS [317]. QCD
corrections, anomalous couplings and interface to JETSET are provided. The program
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aims at a 1-2% precision.

LPWW02 [318] — It is a Monte Carlo code containing the Feynman diagrams with two
resonant W ’s and Z’s, initial- and final-state radiation with SF’s in the collinear approx-
imation. Coulomb singularity and QCD corrections are incorporated. It is interfaced to
JETSET.

PYTHIA/JETSET [319] — It is a general-purpose event generator for a multitude of pro-
cesses in e+e−, ep and pp collisions. It is especially designed for detailed modelling of
hadronic final states, rather than precision electroweak studies. It includes the CC03
diagrams for the Born matrix element and a hybrid SF+PS treatment of ISR. FSR
is implemented according to a PS description. The Coulomb correction is available.
Hadronization is built-in.

WOPPER 1.5 [320] — It is a Monte Carlo generator for unweighted 4f events. It includes
the CC11 set of diagrams, ISR according to a PS algorithm, with finite pT for photons
generated according to the 1/(p · k) pole. Coulomb and QCD corrections, anomalous
couplings as well as interface to hadronization are provided.

WPHACT 1.0 [321] — This Monte Carlo program can compute all processes with four
fermions in the final state. In particular, by virtue of the helicity formalism adopted
that allows a semi-automatic calculation of the matrix elements [322,323], finite b-quark
mass effects are fully taken into account for NC processes. Higgs-boson production is
included. ISR is included using SF in the collinear approximation. The Coulomb term
and anomalous couplings are incorporated. Interface to hadronization is present.

WTO [324] — It is a deterministic code implementing the largest part of the 4f Feynman
diagrams (including Higgs-boson signal) obtained with the helicity method described
in [261]. ISR using SF’s in the collinear approximation, anomalous couplings, QCD
and Coulomb corrections are available. The fermion-loop scheme as gauge restoration
mechanism is active. Some options for the estimate of the theoretical error are provided.
Interface to hadronization is present.

WWF 2.2 [325] — This Monte Carlo generator is a kind of merger of an explicit e+e− →
4f +γ matrix element with SF’s for the description of ISR beyond the LL approximation.
However, non-leading corrections are implemented in an approximate way. The CC20 set
of tree-level diagrams is included. FSR is implemented by using an explicit one-photon
matrix element. All the other relevant radiative corrections, as well anomalous couplings
and JETSET interface, are provided.

WWGENPV 2.1/HIGGSPV [279] — They are Monte Carlo generators computing the largest
part of 4f tree-level matrix elements (including Higgs-boson production) derived ac-
cording to the helicity formalism of ref. [261]. ISR and FSR are treated within the
SF approach, including pT /pL effects. Coulomb and QCD corrections are implemented.
Anomalous couplings and interface to JETSET are also available.

Before the start of the LEP2 operations, an extensive comparison of all the Monte
Carlo and semi-analytical programs available for the analysis of 4f processes was carried
out in the context of the working group “Event generators for WW physics” of the CERN
workshop “Physics at LEP2” [258]. The predictions for both total cross sections and more
exclusive observables of primary importance for the measurement of the properties of
the W boson (such as W -boson production angle, invariant masses, radiative energy loss
etc.) were compared in detail. “Tuned” comparisons generally showed very satisfactory
agreement between the codes (at the level of 0.1%), pointing out a correct implementation
of the advertised features and a high technical precision. Other highlights of the study
can be summarized as follows
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• the contribution of background processes is in general not negligible and therefore
dedicated 4f codes are more suitable for precision measurements of the W -boson
properties than general-purpose programs;

• for several observables, the effect of photon pT is important on both ISR and FSR;

• the available estimates of the present theoretical error show that it is not much
smaller than the expected experimental uncertainty; as a consequence, a more
reliable estimate of the complete one-loop corrections to e+e− → 4f could give
some relevant piece of information.

5
.
3. The W -boson Mass and Anomalous Couplings. – As discussed in Sect. 5

.
2,

the basic aims of the study of W -pair production in 4f final states at LEP2 are the
precise direct measurement of the mass of the W boson, MW , and the detection of
possible anomalies in the γWW and ZWW vertices (anomalous couplings). All the
decay channels of W -pair production are used in the experimental analysis: the hadronic
channel WW → qq̄qq̄ (45.6% decay fraction), the semi-leptonic channel WW → lνqq̄
(43.8%) and the leptonic channel WW → lνlν (10.6%).

5
.
3.1. The W -boson mass. Two different methods are employed to measure the mass

of the W boson at LEP2 [248]:

• the threshold method;

• the direct reconstruction method.

The former determination exploits the strong sensitivity of the W+W− production cross
section to the W -boson mass near the nominal threshold; in the latter method, the
Breit-Wigner resonant shape of the invariant mass distribution of the W±-boson decay
products is directly reconstructed, thus yielding MW . The statistically most precise
determination comes from the direct reconstruction method, since most of the LEP2
data is and will be collected at energies well above the threshold. Furthermore, very
different systematic errors affect the two strategies, that therefore can be considered as
complementary methods able to provide an internal cross-check on the W -boson mass
measurement at LEP2.

As can be seen from Fig. 50, the cross section for W -pair production increases very
rapidly near the nominal kinematic threshold at

√
s = 2MW , although the finite W -boson

width and ISR significantly smear out the sharp rise of the (unphysical) cross section for
producing two on-shell W ’s (see Fig. 53). This means that for a given

√
s near threshold

the W -pair production cross section is very sensitive to the W -boson mass, so that a
measurement of the cross section in this energy region directly yields a measurement
of MW . In the threshold determination, the error on the W -boson mass due to signal
statistics is given by

∆MW =
√

σWW

∣

∣

∣

∣

dMW

dσWW

∣

∣

∣

∣

1√
εWW L

,(159)

where σWW is the total W -pair production cross section, εWW is the overall signal
efficiency and L is the integrated luminosity. By studying the sensitivity factor given by√

σWW |dMW /dσWW | as a function of
√

s − 2MW , one finds that there is a minimum
located at

√
s ≃ 2MW + 0.5 GeV,(160)
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corresponding to around 161 GeV as the c.m. energy providing the optimal sensitivity to
MW (see Fig. 56). Since the statistical uncertainty is the most relevant source of error for
the threshold method, the optimal strategy for data taking consists therefore in operating
at

√
s ≃ 161 GeV in order to minimize the statistical error. The systematic errors on

MW in the threshold method are due to the uncertainties in the W -pair production
cross section: the luminosity error, unknown corrections to the theoretical cross section,
as those discussed in Sect. 5

.
2.3, the uncertainty in the beam energy, the background

subtraction and others. However, as already stressed, the overall error in the threshold
measurement is largely dominated by the limited statistics. The present LEP average
for MW from the WW production cross section at

√
s ≃ 161 GeV is [8]

MW = 80.40 ± 0.22GeV .(161)

The direct reconstruction method consists in reconstructing the peak in the invariant
mass distributions of the W -boson decay products, by using either the semi-leptonic
decay mode (WW → lνqq̄) or the hadronic one (WW → qq̄qq̄). The measurements
are carried out at energies above the threshold (

√
s > 170 GeV) in order to reduce the

statistical error thanks to the larger WW cross section. The accuracy of the jet energy
measurement is too poor to allow a precision measurement of MW . Therefore, kinematic
fit techniques, using the constraints of energy and momentum conservation, together with
the equality of the two W -boson masses in an event, are used by the LEP Collaborations
to improve the mass resolution [248]. This implies that a good knowledge of the c.m.
energy is essential. As already pointed out, systematics affecting this method are largely
independent of those present in the threshold method. In particular, the qq̄qq̄ channel
turns out to be more problematic than the lνqq̄ one: indeed, besides a larger background
contamination, the phenomena of colour reconnection and Bose-Einstein correlations (see
below) introduce additional systematic uncertainties that are absent in the semi-leptonic
channel. Systematic errors that are common to both channels are

• error from the LEP beam energy;

• errors from the theoretical description (ISR, background, 4f diagrams and frag-
mentation);

• errors from the detector.

In order to estimate the uncertainties due to 4f diagrams and ISR, the theoretical in-
gredients discussed in Sects. 5

.
2.1 and 5

.
2.3, and the corresponding computational tools

based on them, are very useful tools. Indeed, the effect of 4f subprocesses other than
the ones belonging to the CC03 class, induces an uncertainty of 20 MeV and 25 MeV on
MW for the qq̄qq̄ and lνqq̄ channel, respectively, and is evaluated by using MC samples
generated with one or more of the 4f generators described in Sect. 5

.
2.4. Moreover, pre-

cision calculations of the radiative energy loss (see eq. (158)) in 4f production at LEP2
are mandatory. Actually, the relatively large average energy (< Eγ >≃ 1.1, 2.1, 3.2 GeV
at

√
s = 175, 190, 205 GeV, respectively) carried away by the radiated photons leads to a

significant mass-shift if it is not taken into account in rescaling or constraining the ener-
gies of the final-state W -boson decay products to the beam energy. Indeed, the average
mass-shift caused by ISR is of the order of < Eγ > MW /

√
s, i.e. about 500 MeV at√

s = 175 GeV. However, since a fit to the mass distribution gives more weight to the
peak, the actual mass shift at

√
s = 175 GeV is about 200 MeV, anyway important in

view of the envisaged experimental precision on MW . Since, as discussed in Sect. 5
.
2.3,
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the exact treatment of O(α) corrections to off-shell W -pair production is not yet avail-
able, the theoretical predictions for < Eγ >, including the presently under control LL
and Coulomb corrections, are affected by an intrinsic uncertainty, that translates into
an error of 10-15 MeV on the W -boson mass. This theoretical uncertainty is due to
non-leading photonic terms, for instance associated with the radiation of photons off the
intermediate W bosons, and should be reduced soon in the light of the recent progress
in the calculation of non-leading QED corrections discussed in Sect. 5

.
2.3.

Colour reconnection and Bose-Einstein effects [248], that are systematics specific to
the qq̄qq̄ channel, are interconnection phenomena that may obscure the separate iden-
tities of the two W bosons, so that the 4f final state may no longer be considered as
consisting of two separate W -boson decays. Indeed, in the LEP2 energy regime the aver-
age distance between the W+ and W− decay vertices is smaller than 0.1 fm, i.e. less than
a typical hadronic size. Therefore the fragmentation of the W+ and the W− may not be
independent and may seriously affect the mass reconstruction. The colour-reconnection
problem arises from the fact that the W -boson pair, decaying into quark-antiquark pairs
qq̄ and QQ̄, respectively, can either fragment into two strings stretched between qq̄ and
QQ̄, or into two strings stretched between qQ̄ and Qq̄. Owing to the colour charges,
the probability and the properties of the two possible configurations are very differ-
ent. Of the two phases characterizing the fragmentation of the initial quark-antiquark
pairs into hadrons, i.e. perturbative parton cascade and non-perturbative hadronization,
the perturbative QCD interconnection effects have been shown not to be very impor-
tant [326, 327], whereas the influence of non-perturbative fragmentation can be only
estimated by comparing different models. The interesting aspect is that quite different
approaches give uncertainties of the same order, i.e. about 100 MeV, conservatively. Also
Bose-Einstein correlations are due to the overlapping of the W+ and W− hadronization
regions: consequently, low-momentum bosons coming from different W ’s can experience
coherence effects. Their influence on the W -boson mass-shift can be estimated by using
theoretical models. However, it is worth noticing that experimental studies at LEP2
show no evidence yet for Bose-Einstein correlations and that recent theoretical investi-
gations suggest that they may not be a serious systematic (see for instance [328]). The
present experimental attitude consists in trying to measure interconnection effects in
data through detailed comparison of qq̄qq̄ and lνqq̄ channels.

The present LEP average for MW from the direct reconstruction method at
√

s =
172 GeV is [8]

MW = 80.53 ± 0.18 GeV .(162)

It is worth noticing that good consistency between experiments and between qq̄qq̄ and
lνqq̄ channels is observed.

By combining the
√

s = 161 GeV (threshold) and the
√

s = 172 GeV (direct recon-
struction) results, the present MW value from LEP2 is [8]

MW = 80.48 ± 0.14 GeV .(163)

The LEP2 result for MW can be combined with the measurement by CDF/D0 at the
TEVATRON, in order to compile a world average. The W -boson mass measurements at
the TEVATRON are based on fits to the transverse mass distribution of lν produced in
the process qq̄ → W → lν(l = e, µ). By combining the CDF/D0 results with the UA2
measurement, the average MW from hadron machines is [8]

MW = 80.41 ± 0.09 GeV .(164)
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The present world average MW from LEP2 and pp̄ colliders is [8]

MW = 80.43 ± 0.08 GeV .(165)

By the end of LEP2 and TEVATRON run 2, both experiments expect to achieve an
error on MW of around 0.03-0.04 GeV, comparable with the present error from indirect
determination by means of precision data.
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Fig. 56. – The W -pair production cross section (from [8]).

5
.
3.2. Anomalous couplings. In addition to the W -boson mass, the second impor-

tant piece of information that W -pair production at LEP2 can provide is the structure
of the triple gauge-boson couplings (TGC). Contrary to LEP1 physics, where TGC only
enter through loop corrections to two-fermion production, at LEP2 these couplings are
responsible of the behaviour of the tree-level W -pair cross section. Since the specific
form for the TGC in the SM is a consequence of the Yang-Mills character of the theory,
the study of W -pair production at LEP2 allows to test directly the non-abelian nature
of the SU(2) × U(1) gauge theory. Indeed, in spite of the precision tests of the elec-
troweak interaction at LEP1 and SLC, the non-abelian sector of the SM remains poorly
measured to date, even if the very existence of non-abelian coupling can be considered
experimentally proved by the recent LEP2 data (see Fig. 56).

WWZ and WWγ couplings different from the form predicted by the SM are called
anomalous couplings. The latter will in general lead to a bad high-energy behaviour of
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cross sections violating unitarity. However, since at LEP2 the c.m. energy is too low to
point out such effects, the presence of anomalous couplings can be eventually established
through the study of the angular distributions of the W bosons and their decay prod-
ucts. As for the W -boson mass measurement, the control of radiative corrections and
background contributions is necessarily required, since they induce deviations from the
tree-level angular distributions.

Possible anomalies in the WWV (V = Z or γ) vertex can be parameterized in terms
of a purely phenomenological effective Lagrangian [329,330]

iLWWV
eff = gWWV

[

gV
1 V µ

(

W−
µνW+ν − W+

µνW−ν
)

+ kV W+
µ W−

ν V µν +

λV

M2
W

V µνW+ρ
ν W−

ρµ + igV
5 εµνρσ

(

(∂ρW−,µ)W+,ν − W−,µ(∂ρW+,ν)
)

V σ +

igV
4 W−

µ W+
ν (∂µV ν + ∂νV µ) − k̃V

2
W−

µ W+
ν εµνρσVρσ −

λ̃V

2M2
W

W−
ρµW+µ

ν ενραβVαβ

]

,(166)

that provides the most general Lorentz invariant WWV vertex, observable in processes
where the vector bosons couple to effectively massless fermions. The definitions in
eq. (166) read as follows

gWWγ = e gWWZ = e cot ϑW

Wµν = ∂µWν − ∂νWµ Vµν = ∂µVν − ∂νVµ.(167)

Therefore, 2×7 independent parameters are needed to describe the most general Lorentz
invariant WWV vertex. Within the SM and at the tree level the couplings in eq. (166)
are given by gZ

1 = gγ
1 = kZ = kγ = 1, with all other couplings vanishing. It is worth

noticing that gV
1 , kV and λV conserve C and P separately, while gV

5 violates C and P
but conserves CP . Furthermore g4

V , k̃V and λ̃V parameterize a possible CP violation in

the bosonic sector. In particular, the C and P conserving parameters in LWWγ
eff can be

linked to the static e.m. moments of the W+ boson as follows [331]

charge QW = egγ
1 ,

magnetic dipole moment µW =
e

2MW
(gγ

1 + kγ + λγ) ,

electric quadrupole moment qW = − e

M2
W

(kγ − λγ) .(168)

In practice it is impossible to set limits on all the above couplings, so that a number
of assumptions have to be made in order to reduce the number of parameters. In the
literature, two different theoretical strategies are followed. On the one side, the number
of parameters can be reduced by advocating symmetry arguments [330, 332]. On the
other hand, the dimensional analysis of the operators involved in the parameterization
allows to establish a hierarchy of the operators themselves according to a scaling law of
the kind (E/Λ)d−4, where E is the energy of interest, Λ is the typical energy scale of non-
standard physics and d is the dimension of the operators. The latter procedure allows
to single out a reduced set of parameters able to produce phenomenologically relevant
effects at the energy scale of interest [333].
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For instance, if C, P and electromagnetic gauge invariance are imposed, the number
of parameters reduces to five, namely λγ , λZ , kγ , kZ and gZ

1 . Furthermore, since the
effective Lagrangian of eq. (166) contains as a particular case the triple gauge-bosons
Lagrangian of the electroweak theory, it is possible and convenient to introduce deviations
from the SM predictions for the five parameters as

∆gZ
1 = gZ

1 − 1, ∆kγ,Z = kγ,Z − 1, λγ , λZ .(169)

A set of parameters widely used by the LEP Collaborations is given by the following
three combinations, which do not affect the tree-level gauge boson propagators and are
not yet constrained by low energy and Z0 peak data [249]

∆kγ − ∆gZ
1 cos2 ϑW = αBφ,

∆gZ
1 cos2 ϑW = αWφ,

λZ = λγ = αW ,(170)

with the constraint ∆kZ = ∆gZ
1 − ∆kγ tan2 ϑW . The above combinations are all zero

according to the SM.
The experimental strategy followed at LEP2 for the determination of anomalous cou-

plings relies upon the measurement, in 4f production processes, of the differential cross
sections dnσ = dnσ(Θ, ϑ∗

±, ϕ∗
±; α) with n = 1, 3, 5, where Θ is the polar production angle

of the W− boson, ϑ∗
± and ϕ∗

± are the W± decay angles in W -boson rest frames. Among
the W -pair decay channels, the strongest information comes from the semi-leptonic chan-
nel because it allows unambiguous charge assignment. Also single W -boson and single γ
production processes, that are sensitive to the non-abelian WWγ coupling are studied
by the LEP Collaborations, even if they are less powerful than the WW → 4f reactions.
Present combined results from the four LEP experiments are [8]

αWφ = 0.02+0.16
−0.15 − 0.28 < αWφ < 0.33 (95% CL limit)

αW = 0.15+0.27
−0.27 − 0.37 < αW < 0.68 (95% CL limit)

αBφ = 0.45+0.56
−0.67 − 0.81 < αBφ < 1.50 (95% CL limit)(171)

Therefore no discrepancy with the SM is seen in the data. Moreover, an important result
of the anomalous couplings analysis is that the existence of the ZWW vertex is firmly
established, namely gWWZ = 0 is excluded at > 95% CL (see Fig. 56).

5
.
4. Higgs-boson Searches. – As shown in Sect. 4

.
2.2, the electroweak precision data

can be conveniently used to obtain indirect determinations of the Higgs-boson mass
through radiative corrections to the physical observables. Although the weak dependence
of the theoretical predictions on the Higgs-boson mass as well as the their intrinsic
uncertainties prevent to derive stringent predictions for mH , there is a slight preference
in the precision measurements for a relatively light SM Higgs boson, with an upper
limit mH < 420 GeV @ 95% CL [7]. Future more precise direct measurements of the top-
quark mass at the TEVATRON and of the W -boson mass at LEP2 and the TEVATRON,
associated with recent progress in the calculation of two-loop electroweak graphs, should
improve the present constraints on the mass of this yet elusive particle. Indeed, the
search for the Higgs boson certainly constitutes one of the main tasks of present-day
experiments in high-energy physics. The discovery of this neutral scalar particle would
establish the validity of the electroweak theory in its standard formulation, and shed
light on the mechanism of electroweak symmetry breaking and mass generation.
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Fig. 57. – Tree-level Feynman diagram for Higgs-boson production in the channel e+e− →
µ+µ−bb̄ (Higgs-strahlung).

By searching directly for the SM Higgs boson, the LEP experiments have set a
lower bound on the Higgs-boson mass, namely mH > 77 GeV @ 95% CL (four LEP
experiments combined) [182, 183]. This lower limit comes from negative searches of
Higgs-boson production in electron-positron collisions around and above the Z0 peak.
The dominant production mechanism for the SM Higgs boson in the LEP energy range
is the s-channel Higgs-strahlung process e+e− → ZH , where the intial states annihilate
into a virtual Z0 boson that converts into a Z0 and a Higgs boson. Other production
mechanisms, i.e. the fusion processes, where the Higgs boson is formed in WW, ZZ t-
channel collisions, with the W, Z’s radiated off the incoming electron and positrons, have
smaller cross section at LEP energies. However, it is worth keeping in mind that for
νeν̄e and e+e− in the final state, the two amplitudes for the Higgs-strahlung and fusion
process both contribute and interfere.

e-

e+

W
H

b

b
W

νe

νe

Fig. 58. – Tree-level Higgs-boson production via WW fusion.

In view of the LEP2 physics potential, the reachable Higgs-boson mass limit is
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roughly given by mH ≃ √
s − 100 GeV. Even assuming the highest c.m. energy in the

LEP2 operation (
√

s = 205 GeV), the discovery potential of the LEP2 experiments will
not exceed a Higgs-boson mass of around 100 GeV. For a SM Higgs boson with a mass
in the range between 77 (present lower limit) and 100 GeV, the dominant decay mode
is by far H → bb̄. Branching ratios for the decays H → τ+τ−, cc̄, gg are suppressed by
an order of magnitude or more. The corresponding total decay width is predicted in the
electroweak theory to be very narrow, i.e. less than a few MeV for mH less than 100 GeV.
As a consequence of the fact that the Higgs boson predominantly decays into bb̄ pairs
when mH < 100 GeV, the observed final states in Higgs-boson searches at LEP consists
of four fermions. In the case of the Higgs-boson signal these 4f final states are mainly
achieved through the Higgs-strahlung process e+e− → ZH , with the subsequent decays
Z → f f̄ and H → bb̄. In general, whenever excluding Higgs-boson decay channels
other than H → bb̄ (such as H → τ+τ− that is actually considered in Higgs-boson
searches at LEP), the interesting final states for the physics of the Higgs particle at LEP
are bb̄µ+µ−, bb̄e+e− (leptonic channels), bb̄νν̄ (missing energy channel) and bb̄qq̄ (four-jet
channel). Therefore, Higgs-boson physics at LEP2 requires, as for W -pair production, the
calculation of 2 → 4 fermions scattering amplitudes, including signal and backgrounds in
the SM. The Feynman diagram for the Higgs-boson signal in the channel e+e− → µ+µ−bb̄
is depicted in Fig. 57. The additional Higgs-boson production mechanism in the case of
νeν̄ebb̄ final state can be found in Fig. 58; an analogous diagram with ZZ fusion is
present for the e+e−bb̄ final state. For the channel µ+µ−bb̄, that provides the cleanest
event signature, background events are generated, among others, by double vector-boson
production e+e− → ZZ, Zγ and γγ with the virtual Z0 and γ decaying to µ+µ− and
bb̄ pairs (see Fig. 59). Actually, just to give an idea of the degree of complexity of the
full calculation of 2 → 4 amplitudes for Higgs-boson physics, 25 diagrams are present in
the µ+µ−bb̄ channel, 50 diagrams in e+e−bb̄ and 68 in the bb̄bb̄ channel (unitary gauge).
Full 4f calculations for Higgs-boson searches are certainly less demanded with respect
to the case of precision studies of W+W− production. Indeed, given the small Higgs-
boson production cross sections (of the order of tens of fb, two-three orders of magnitude
smaller than the e+e− → W+W− cross section) and the low statistics, precise predictions
are not strictly necessary for discovery physics. However, the theoretical and technical
expertise developed for 4f production in W -boson physics and described in the previous
sections allows to apply the corresponding “machinery” to a comprehensive analysis of
Higgs-boson production as well. The main motivations for complete 4f calculations for
Higgs-boson physics at LEP is that no approximations are introduced in the tree-level
matrix element, differential distributions for the final-state products are directly available
and the background can be precisely evaluated. Therefore, a full calculation allows to test
the degree of validity of the usual approximation of computing production cross section
× branching ratios and of summing squared amplitudes incoherently, thus quantifying
off-shellness and interference effects. Furthermore, once the Higgs boson is discovered,
complete 4f calculations and relative generators could be of great help in the extraction
of the Higgs-boson properties (mass, spin, parity, etc.) that require a good control of
exclusive distributions.

Complete 4f calculations for Higgs-boson physics at LEP have been carried out in
the last few years by several groups [258, 306, 334–338]. The typical calculation strat-
egy consists in computing all tree-level diagrams for a given channel and including the
best available set of radiative corrections, i.e. running electroweak couplings, initial-state
QED radiation, naive QCD final-state corrections and running heavy-quark masses. This
framework is implemented, although with some minor differences, in 4f programs such as
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Fig. 59. – Tree-level Feynman diagrams for the main background processes in the channel
e+e− → µ+µ−bb̄.

compHEP, GENTLE/4fan, HIGGSPV, HZGEN [335], WPHACT and WTO, that have been described
in Sect. 5

.
2.4. The programs compHEP, GENTLE/4fan, HZGEN and WPHACT can evaluate

matrix elements taking into account the finite b quark mass, while HIGGSPV and WTO

consider massless final-state fermions. WPHACT includes also the contribution of SUSY
neutral Higgs-boson production. Some of the codes provide unweighted events with the
four-momenta of all final-state particles, that can be used to process the event through
the detector and to apply cuts for data analysis. The above 4f generators are described
in more detail in [306], where also reference to other programs for Higgs-boson physics
at LEP, such as PHYTIA and HZHA, based on production times decay approximation and
with an incomplete treatment of the SM amplitudes, can be found. In ref. [306] some
comparisons between the predictions of different programs are shown for a sample of 4f
final states, with the conclusions that the agreement between the dedicated 4f generators
is systematically at the level of 1% or better, pointing out the high technical precision
achieved, and that there are situations, such as the bb̄νeν̄e final state, where the difference
between 4f codes and standard computational tools for Higgs-boson searches at LEP,
such as HZHA, not including the full set of SM diagrams, can reach 20-40%, depending on
the c.m. energy and the Higgs-boson mass value. Thanks to the availability of complete
4f calculations, some topics previously not investigated but of interest for Higgs-boson
searches, such as the amount of signal-background interference and the effect of finite
b-quark mass corrections, received the due attention. In the case of massless final-state
fermions, the interference between signal and background diagrams is exactly vanishing,
because massless fermions are coupled to spin-vectors in γ, Z decays and to spin-scalar
in Higgs-boson decay, so that the two amplitudes do not interfere as a consequence of the
different helicity pattern. If the mass of the b quark is kept different from zero in the full
matrix element, then a finite interference does develop. However, it was found that this
effect never exceeds the percent level. Indeed, since for mH < 100 GeV the Higgs-boson
width is of the order of a few MeV, it can be expected a priori that the non-vanishing
signal-background interference is highly suppressed at LEP, as demonstrated by explicit
calculations. Therefore, signal-background interference may be neglected in Higgs-boson
search experiments at LEP. Other conclusions that comes from these analyses is that
ISR is large, varying between 10-20% on the total cross section, and must be included in
Higgs-boson event generators, especially in the light of the distortions induced on exclu-
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sive distributions that are relevant for the determination of the properties of the Higgs
particle.

Fig. 60. – The cross section for Higgs-boson production in the channels e+e− → bb̄µ+µ− and
e+e− → bb̄νν̄. The dotted and dash-dotted lines show tree-level predictions; the solid lines
include ISR. The background cross section is also shown. Numerical results by HIGGSPV [279].

The predictions obtained with the help of the 4f generator HIGGSPV for the Higgs-
boson production cross section in the channels e+e− → bb̄µ+µ− and e+e− → bb̄νν̄ can
be seen in Fig. 60, for two representative values of the Higgs-boson mass. The effect
of backgrounds and ISR are shown as a function of the c.m. energy up to 0.5 TeV. It
is worth observing that in the LEP2 energy range the size of the total cross sections
in both channels can give by itself clear evidence of Higgs-boson production. In the
case of the bb̄νν̄ final state the rise with the c.m. energy of the cross section is due
to the logarithmic enhancement introduced by the t-channel WW fusion processes that
are absent in the bb̄µ+µ− final state. As said above, in order to extract information
on the quantum numbers assignment of the Higgs particle, the angular distributions are
known to be the most sensitive observables. An example of such quantities is given in
Fig. 61, showing the distribution, obtained by means of HIGGSPV, of the b-quark scattering
angle in the laboratory frame, at

√
s = 192 GeV and for three Higgs-boson mass values
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and background alone (e+e− → bb̄νν̄ channel). As can be seen, in the presence of
the Higgs-boson signal as dominant contribution to the bb̄νν̄ cross section, a clearly
isotropic spin zero behaviour is present, whereas it disappears whenever considering
the background only. Since this differential distribution can be meaningfully and more
extensively analyzed by means of complete 4f calculations, the above example should
clarify the usefulness of dedicated precision tools for the measurement of the Higgs-boson
properties.

Fig. 61. – The b-quark scattering angle distribution in the laboratory frame at
√

s = 192 GeV
for the process e+e− → bb̄νν̄. Numerical results by HIGGSPV [279].

To conclude the discussion on Higgs-boson searches in electron-positron collisions, it
is worth noticing that, if LEP does not discover the Higgs boson and its mass lies in the
intermediate range (140 GeV < mH < 2MZ), the search for the Higgs particle at future
e+e− colliders will require the analysis of six-fermion production processes, due to the
decay chain H → W+W− → 4f . Also in this case, in view of the expected experimental
precision and particularly for a precise determination of the Higgs-boson properties,
complete six-fermion calculations of Higgs-boson production and relative computational
tools should be desirable. Actually, the first results along this direction very recently
appeared in the literature [339,340].
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6. – Conclusions

Since 1989 the four experiments ALEPH, DELPHI, L3 and OPAL at LEP and
the SLD Collaboration at SLC collected a large amount of precision data by studying
the processes of two-fermion production in electron-positron collisions at centre of mass
energies close to the mass of the Z0 boson. About 16 millions of Z0 events have been
recorded. The LEP phase around the Z0 resonance (LEP1) was terminated in 1995,
while SLC is continuing in data taking on the Z0 peak. During 1996, the LEP energy
was increased in order to allow the production of W -boson pairs for the first time in
high-energy e+e− collisions. The LEP2 phase is in progress and will continue until 1999.
Meanwhile, almost final results of the analysis of the LEP1/SLC precision data have
become available, although the data analyses, including the final LEP energy calibrations,
are not yet finished.

Looking at the high accuracy reached by the most recent measurements of the elec-
troweak observables, the program of precision physics at LEP/SLC can be considered as
a complete success, thanks to a combined experimental and theoretical effort. Actually,
besides the very successful performance of the LEP machine and important experimen-
tal/technological achievements, the effort undertaken on the theoretical side in precision
calculations for Z0 physics significantly contributed to the progress of precision tests of
the Standard Model (SM).

A key ingredient of the striking success of precision physics at LEP/SLC is undoubt-
edly the high precision determination of the machine luminosity. This has been possible
thanks to the experimental achievements on luminometers, and to the high-precision
calculations of the small-angle Bhabha process, today accurate at the level of 0.1%.

The extremely accurate theoretical predictions for observables of e+e− collisions
into two-fermion final states at large scattering angles provided the necessary theoretical
background for the precise determination of the electroweak parameters performed by
the high-precision experiments.

Concerning the comparison between theory and experiment, the electroweak pre-
cision data confirm the validity of the SM with an impressive accuracy. The standard
theoretical framework is able to accomodate all experimental facts, providing predictions
in agreement with precision measurements. Just to mention some of the major achieve-
ments, the number of light neutrino species has been unambiguously determined to be
equal to 3; the Z-boson mass is at present known with a relative precision of 2 × 10−5,
comparable with the precision of the muon decay constant Gµ; lepton universality has
been tested with an unprecedented precision; the stringent constraints on the neutral
current couplings allow the determination of the weak effective mixing angle with an
absolute error at the level of 3 × 10−4; the W -boson mass is indirectly determined with
a relative error below 0.1%.

By virtue of their high accuracy, the precision measurements show a clear evidence
of pure weak radiative corrections and they can be used to infer valuable information
about the fundamental parameters of the SM. Actually, the measurements are sensitive,
via the virtual effects of radiative corrections, to the top-quark mass mt, the Higgs-boson
mass mH and the strong coupling constant αs. The indirect constraints obtained from
precision data on the mass of the particles not energetically accessible clearly illustrate
the rôle of quantum loops in raising precision physics to the level of discovery physics.

From all the available data (excluding the direct determination of mt and MW from
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the TEVATRON and LEP2) the best current estimate of the top-quark mass is [7, 8]

mt = 157+10
−9 GeV.

This indirect determination is in beautiful agreement with the measurement of the top-
quark mass from direct production at the TEVATRON [168], mt = 175.6 ± 5.5 GeV,
illustrating the constraining power of the precision measurements.

The value of αs(MZ) derived from a fit to all electroweak data is [7, 8]

αs(MZ) = 0.120 ± 0.003,

in very good agreement with the world average and of similar precision. This indirect
determination, when associated with the αs measurements from other processes and at
different energy scales, significantly proves the running of αs as predicted by the non-
abelian structure of QCD.

The Higgs-boson is the still missing block of the SM. Although the constraints in-
ferred on the mass of the Higgs boson from precision data are not conclusive, as a conse-
quence of the weak logarithmic dependence of radiative corrections on mH , electroweak
measurements imply an indicative mass window, thus providing valuable information in
view of the planned searches at the LHC and future e+e− colliders. A fit to all data
gives [7, 8]

mH = 115+116
−66 GeV,

mH < 420 GeV (95% CL),

where also the theoretical uncertainty due to missing higher-order corrections is taken
into account in the one-sided 95% CL upper limit. A general caveat is in order here. The
upper limit quoted above depends heavily on the presence of the left-right asymmetry
from SLC in the data set. Therefore, the only reliable conclusion is that a very heavy
Higgs boson, that would be rather problematic for future direct searches, is excluded
by precision data. Future improved measurements of the W -boson mass at LEP2 and
the TEVATRON and of the top-quark mass at the TEVATRON, together with recent
progress in the calculation of higher-order radiative corrections, are expected to sharpen
the existing constraints on mH .

The first experimental results of LEP2 are available. As in the LEP1 case, the
theoretical tools, noticeably the accurate predictions concerning reactions of the kind
e+e− → 4-fermion final states, provide the necessary theoretical scheme for the data-
theory comparison. The recent LEP2 measurements of the W pair production cross sec-
tion already show clear evidence for the existence of the gauge bosons self-interactions,
thus testing a crucial prediction of the non-abelian structure of the theory. Future mea-
surements of the W -boson mass are expected to reach an accuracy comparable with the
one obtained in the direct determination performed at the TEVATRON and the indirect
determination at LEP1/SLC as calculated via radiative corrections.

Looking beyond the SM, the possible scenarios of new physics are strongly con-
strained by the delicate agreement between the SM and the precision data. Since no
significant anomalies are present, the natural candidates are represented by models that
do not modify the structure of the SM significantly. For this reason, theories with funda-
mental Higgs particles, such as supersymmetry, are generally considered more favourite
than models implying composite Higgs bosons and new strong interactions. Given the
large value of the top-quark mass, a fundamental Higgs-boson with a relatively low mass,
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as inferred by precision electroweak data, can be nicely accommodated in a supersymmet-
ric theory (such as the Minimal Supersymmetric Standard Model) broken at some high
energy scale. Supersymmetry provides also a viable scenario to realize the unification of
the coupling constants in a grand unified theory (GUT). Actually, the determination of
sin2 ϑeff and αs(MZ) as obtained from precision data is compatible with gauge coupling
unification at a large energy scale, provided the mass spectrum of the GUT includes
supersymmetric particles.

Although new elementary particles have not been directly discovered by experiments
at LEP and SLC, it can be said that precision physics provided important pieces of
information to our present knowledge in particle physics and contributed significantly to
obtain hints on how new physics beyond the SM is realized in Nature.
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A. – Universal Photonic Corrections

A common set of radiative corrections to s-channel annihilation and t-channel scat-
tering processes is represented by QED radiative corrections. In the so called leading
logarithmic (LL) approximation, they are dominated by long-distance contributions, and
hence are process independent. Going beyond the LL approximation, it is necessary
to take into account process-dependent corrections, which are no more universal and
can be computed by means of standard diagrammatic techniques. In the following, an
overview of the most popular algorithms developed for the computation of QED correc-
tions in the LL approximation, namely the Structure Function (SF) method, the Parton
Shower (PS) method and Yennie-Frautschi-Suura (YFS) exclusive exponentiation, will be
given.(8) Just for definiteness, only s-channel processes will be considered, the general-
ization to t-channel processes being almost straightforward. It is worth noticing that for
two of these methods, namely the SF method and YFS exclusive exponentiation, proper
procedures for matching the all-orders LL results with finite-order exact diagrammatic
results have been developed.

(8) It is worth noticing that at least two additional frameworks for the computation of QED corrections
in the LL approximation have been also developed, namely the Coherent States approach [341] and the
Unitary Method [342]. The interested reader is referred to the original literature.
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A
.
1. The Structure Function Method. – Let us consider the annihilation process

e−e+ → X , where X is some given final state, and let σ0(s) be its lowest order cross sec-
tion, possibly including all the short-distance process dependent corrections, as those dis-
cussed in Sect. 3. Initial-state (IS) QED radiative corrections can be described according
to the following picture. Before arriving at the annihilation point, the incoming electron
(positron) of four-momentum p−(+) radiates real and virtual photons (bremsstrahlung).
These photons, due to the dynamical features of QED, are mainly radiated along the
direction of motion of the radiating particles, and their effect is mainly to reduce the
original four-momentum of the incoming electron (positron) to x1(2)p−(+). After this
“pre-emission”, the “hard” subprocess e−(x1p−)e+(x2p+) → X takes place, at a re-
duced centre of mass energy squared ŝ = x1x2s. The resulting cross section, corrected
for IS QED radiation, can be represented as follows [343]:

σ(s) =

∫ 1

0

dx1dx2D(x1, s)D(x2, s)σ0(x1x2s)Θ(cuts),(172)

where D(x, s) are the electron structure functions, representing the probability that an
incoming electron (positron) radiates a collinear photon, retaining a fraction x of its
original momentum, and Θ(cuts) represent the rejection algorithm implemented in order
to take care of experimental cuts (see Fig. 62 for a graphical representation).

σ0

. . .

f1
f2 fn

D D

E x1 E x2 E E

Fig. 62. – Graphical representation of eq. (172).

Equation (172) takes into account only IS photonic radiation, for the sake of simplic-
ity. It has however to be noticed that in the literature more accurate LL results can be
found, taking into account also kinematical effects due to IS radiation and/or the effect
of final-state radiation for the small-angle Bhabha process [21, 122].

Actually, when considering photonic radiation only the non-singlet part of the SF
is of interest. If the running of the QED coupling constant α(s) is neglected (which
corresponds to neglecting the corrections due to additional pair production, that can be
taken into account properly by means of dedicated formulae [121]), the non-singlet part
of the SF is the solution of the following Renormalization Group (RG) equation:

s
∂

∂s
D(x, s) =

α

2π

∫ 1

x

dz

z
P+(z)D

(x

z
, s
)

,(173)
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where P+(z) is the so called Altarelli-Parisi (AP) splitting function [344], given by

P+(z) = P (z) − δ(1 − z)

∫ 1

0

dxP (x),

P (z) =
1 + z2

1 − z
.(174)

Equation (173) can be also transformed into an integral equation, subject to the boundary
condition D(x, m2

e) = δ(1 − x):

D(x, s) = δ(1 − x) +
α

2π

∫ s

m2
e

dQ2

Q2

∫ 1

x

dz

z
P+(z)D

(x

z
, Q2

)

.(175)

Equation (175) can be solved exactly by making use of numerical methods. One of
these is the so called inverse Mellin transform method, which is briefly described in the
following. The Mellin transformation is defined as

F (n) =

∫ 1

0

dxxn−1f(x),(176)

f(x) =

∫ γ+i∞

γ−i∞

dn

2πi
x−nF (n).(177)

By taking the Mellin transform of eq. (172), switching to the differential form of the
evolution equation and solving for the Mellin moments, one finds

D(n, s) = exp
[η

4
C(n)

]

,(178)

where C(n) are the Mellin moments of the AP splitting function

C(n) =

∫ 1

0

dzzn−1P+(z)(179)

and

η =
2α

π
ln

(

s

m2
e

)

.(180)

By computing the moments of eq. (179), inserting them into (178), and performing nu-
merically the anti-transformation given by (177), the exact numerical solution of (175)
is obtained. There is only a technical remark at this point: the integrand of the anti-
transformation is strongly oscillating in the asymptotic region, so that a proper regular-
ization procedure must be adopted in order to obtain numerical convergence.

For practical purposes, it is also of great interest to obtain approximate analytical
representations of the solution of the evolution equation. A first analytical solution can
be obtained in the so called soft photon approximation, i.e. in the limit x ≃ 1. In such a
limit, the dominant contribution to eq. (177) comes from the large n region, so that one
can approximate the moments of the AP splitting function by means of their asymptotic
expansion, namely

C(n) ≃ 3

2
− 2γE − 2 ln n + O

(

1

n

)

,(181)



PRECISION PHYSICS AT LEP 131

γE being the Euler constant. By inserting eq. (181) into eq. (178) and computing the
anti-transformation one obtains

DGL(x, s) =
exp

[

1
2η
(

3
4 − γE

)]

Γ
(

1 + 1
2η
)

1

2
η(1 − x)

1
2

η−1,(182)

Γ being the Euler gamma-function. The solution shown in eq. (182) is known as the
Gribov-Lipatov (GL) approximation [345]. Its main feature is that it exponentiates at
all perturbative orders the large logarithmic contributions of the kind η ln(1 − x). Its
main drawback is that it is valid only in the soft limit, i.e. it does not take into account
properly hard-photon effects.

The evolution equation (175) can also be solved iteratively. At the n-th step of the
iteration, one obtains the O(αn) contribution to the structure function. The iterative
solution of the evolution equation is, in some sense, complementary to the exponenti-
ated GL solution. Actually, on the one hand the GL solution is exponentiated at all
perturbative orders, whereas the iterative solution must be truncated at a given finite
perturbative order. On the other hand, the GL solution is valid in the limit x ≃ 1,
whereas any given iterative contribution can be computed exactly.

In order to go beyond the soft-photon approximation, the following general strategy
has been adopted. Given an iterative solution up to a given perturbative order, for each
perturbative contribution it is possible to isolate the part which is contained in the GL
solution. Then, by combining the GL solution with the iterative one, in which that part
has been eliminated in order to avoid double counting, one can build a hybrid solution
of the evolution equation, which exploits all the positive features of the two kinds of
solutions and does not present anymore the limitations intrinsic to each of them. As
a matter of fact, in the literature it is possible to find two classes of hybrid solutions,
namely the additive and factorized ones. The additive solutions have the following general
structure: they are built by simply adding to the GL solution the finite order terms
computed by means of the iterative solutions. The factorized solutions, on the contrary,
are obtained by multiplying the GL solution by finite order terms, in such a way that,
order by order, the iterative contributions are exactly recovered. In the following, the
third order exponentiated additive and factorized solutions are reported. The additive
one reads [239]:

DA(x, s) =

3
∑

i=0

d
(i)
A (x, s),

d
(0)
A (x, s) = DGL(x, s),

d
(1)
A (x, s) = −1

4
η(1 + x),

d
(2)
A (x, s) =

1

32
η2

[

(1 + x) (−4 ln(1 − x) + 3 ln x) − 4
ln x

1 − x
− 5 − x

]

,

d
(3)
A (x, s) =

1

384
η3
{

(1 + x)
[

18ζ(2) − 6Li2(x) − 12 ln2(1 − x)
]

+
1

1 − x

[

−3

2
(1 + 8x + 3x2) ln x − 6(x + 5)(1 − x) ln(1 − x)

−12(1 + x2) ln x ln(1 − x) +
1

2
(1 + 7x2) ln2 x



132 G. MONTAGNA, O. NICROSINI and F. PICCININI

−1

4
(39 − 24x − 15x2)

]}

,(183)

where ζ is the Riemann ζ-function. The factorized one reads [119,238]:

DF (x, s) = DGL(x, s)

2
∑

i=0

d
(i)
F ,

d
(0)
F =

1

2
(1 + x2),

d
(1)
F =

1

4

η

2

[

−1

2
(1 + 3x2) ln x − (1 − x)2

]

,

d
(2)
F =

1

8

(η

2

)2
[

(1 − x)2 +
1

2
(3x2 − 4x + 1) ln x

+
1

12
(1 + 7x2) ln2 x + (1 − x2)Li2(1 − x)

]

.(184)

It is worth noting that also higher order solutions are known, numerically and/or ana-
lytically, for both the classes of solution. However, LEP phenomenology is not sensitive
to hard photonic terms beyond the third order.

If only cuts on the invariant mass of the event after ISR are considered, eq. (172)
can be simplified by performing explicitly one of the integrations. Actually, for s′ ≥ x0s,
it can be shown that the QED corrected cross section can be written as

σ(s) =

∫ 1−x0

0

dxH(x, s)σ0 ((1 − x)s) ,(185)

where H(x, s) is the so called radiator, or flux function, defined as

H(x, s) =

∫ 1

1−x

dz

z
D(z, s)D

(

1 − x

z
, s

)

.(186)

By defining
K(x, s) = H(1 − x, s)(187)

and taking the Mellin moments of eq. (187), the following identity can be shown:

K(n, s) =

∫ 1

0

dxxn−1K(x, s) = D2(n, s) = exp
[η

2
C(n)

]

,(188)

where C(n) are the Mellin moments of the AP splitting function, given by eq. (181). In
virtue of eq. (188), the following identity holds:

Hη(x, s) = D2η(1 − x, s).(189)

It is worth noticing that in QED there are some non-leading corrections that behave
much like the leading logarithmic ones. Actually, it can be verified by inspection that
after the substitution

η → β =
2α

π

[

ln

(

s

m2
e

)

− 1

]

(190)

the O(α) distribution of the invariant mass of the event after ISR as extracted from
eq. (185) reproduces exactly the standard diagrammatic calculation.
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Moreover, it has to be noticed that it is possible to match the all-orders LL results of
the SF method with exact finite-order diagrammatic results. For the Z0 line shape, the
match has been performed in the soft-photon approximation up to O(α2), according to
the procedure described in Sect. 3

.
4. Also a more general procedure for implementing the

matching beyond the soft-photon approximation, and hence taking into account hard-
photon effects, is known and can be found in ref. [23].

A
.
2. The Parton Shower Method. – The Parton Shower method is substantially a

method for providing a Monte Carlo iterative solution of the evolution equation, at the
same time generating the four-momenta of the electron and photon at a given step of
the iteration. It has been studied within the context of QCD (see for instance refs. [346]
and [347]) and subsequently developed also for QED (see refs. [348], [349], [350] and
references therein). In order to implement the algorithm, it is first necessary to assume
the existence of an upper limit for x, in such a way that the AP splitting is regularized
as follows:

P+(z) = θ(x+ − z)P (z) − δ(1 − z)

∫ x+

0

dxP (x).(191)

Of course, in the limit x+ → 1 eq. (191) recovers the usual definition of the AP splitting
function given in eq. (174). By inserting the modified AP vertex into eq. (173), one
obtains

s
∂

∂s
D(x, s) =

α

2π

∫ x+

x

dz

z
P (z)D

(x

z
, s
)

− α

2π
D(x, s)

∫ x+

x

dzP (z).(192)

Separating now the variables and introducing the Sudakov form factor

Π(s1, s2) = exp

[

− α

2π

∫ s1

s2

ds′

s′

∫ x+

0

dzP (z)

]

,(193)

which is the probability that the electron evolves from virtuality −s2 to −s1 without
emitting photons of energy fraction larger than 1 − x+, eq. (192) can be recast into
integral form as follows:

D(x, s) = Π(s, m2
e)D(x, m2

e) +
α

2π

∫ s

m2
e

ds′

s′
Π(s, s′)

∫ x+

x

dz

z
P (z)D

(x

z
, s′
)

.(194)

The formal iterative solution of eq. (194) can be represented by the following infinite
series:

D(x, s) =

∞
∑

n=0

n
∏

i=1

{

∫ si−1

m2
e

dsi

si
Π(si−1, si)

α

2π

∫ x+

x/(z1···zi−1)

dzi

zi
P (zi)

}

Π(sn, m2
e)D

(

x

z1 · · · zn
, m2

e

)

.(195)

The particular form of (195) allows to use a Monte Carlo method for building the solution
iteratively. The algorithm is standard, and can be described as follows:

1 – set Q2 = m2
e, and fix x = 1 according to the boundary condition D(x, m2

e) =
δ(1 − x);

2 – generate a random number ξ in the interval [0, 1];
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3 – if ξ < Π(s, Q2) stop the evolution; otherwise

4 – compute Q′2 as a solution of the equation ξ = Π(Q′2, Q2);

5 – generate a random number z according to the probability density P (z) in the
interval [0, x+];

6 – substitute x → xz and Q2 → Q′2; go to 2.

An important feature of this algorithm is that it can be used to generate exclusive events
containing the complete information on the four-momenta of the particles. This fact is
well known for the QCD analog of the algorithm, and relies upon the kinematical rules
of the so called jet calculus. For the case under consideration, in which at the i-th step of
the iteration a virtual parent electron branches into a virtual electron plus a real photon,
the space-like kinematics apply. In particular, one has

e(p) → e(p′) + γ(q),(196)

where p2 = −K2, p′2 = −K ′2 and q2 = 0. Assuming that the parent electron moves
along the z axis, the four-momenta of the particles can be parameterized as follows:

p = (E,~0, pz),

p′ = (E′, ~p⊥, zpz),

q = (Eγ ,−~p⊥, (1 − z)pz).(197)

From the kinematics of eq. (197), in the limit pz → ∞, the following relations can be
derived:

E ≃ pz − K2

2pz
,

E′ ≃ zpz +
p2
⊥

2zpz
− K ′2

2zpz
,

Eγ ≃ (1 − z)pz +
p2
⊥

2(1 − z)pz
,(198)

from which, by imposing energy conservation, one obtains

−K2 = −K ′2

z
+

p2
⊥

z(1 − z)
.(199)

Given K2, K ′2 and z, eq. (199) allows one to compute the absolute value of the transverse
momentum at the branching.

A
.
3. YFS Exponentiation. – The Yennie-Frautschi-Suura exponentiation procedure

is essentially a technique for summing up all the infra-red (IR) singularities present in
any given process accompanied by photonic radiation [351]. It is inherently exclusive,
i.e. all the summations of the IR-singular contributions are done before any phase-space
integration over the virtual- or real-photon four-momenta are performed [352]. In the
following, the general idea underlying the procedure will be shortly described (see for
instance [353] for a more detailed analysis).

Let us consider the process e+(p1)e−(p2) → f1(q1) · · · fn(qn), where f1(q1) · · · fn(qn)
represents a given arbitrary final state, and let M0 be its matrix element. By using
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Fig. 63. – The Feynman diagrams for the initial-state O(α) bremsstrahlung correction.

standard Feynman-diagram techniques, it is possible to show that the same process,
when accompanied by l additional real photons radiated by the initial-state particles,
and under the assumption that the l additional photons are soft, i.e. their energy is
much smaller that any energy scale involved in the process, can be described by the
factorized matrix element built up by the lowest order one, M0, times the product of l
eikonal currents, namely

M ≃ M0

l
∏

i=1

[

e

(

εi(ki) · p2

ki · p2
− εi(ki) · p1

ki · p1

)]

,(200)

where e is the electron charge, ki are the momenta of the photons and εi(ki) their po-
larization vectors (see Fig. 63 for a representation of the Feynman diagrams relative to
the initial-state O(α) bremsstrahlung correction). By taking the square of the matrix
element in eq. (200), multiplying for the proper flux factor and the Lorentz-invariant
phase space volume element, neglecting the four-momenta of the radiated photons in
the overall energy-momentum conservation, summing over the final state photons po-
larizations and combining properly all the factors, the cross section for the process
e+(p1)e−(p2) → f1(q1) · · · fn(qn) + l real photons can be written as

dσ(l)
r = dσ0

1

l!

l
∏

i=1

[

kidkid cos ϑidϕi
1

2(2π)3

∑

εi

e2

(

εi(ki) · p2

ki · p2
− εi(ki) · p1

ki · p1

)2
]

.(201)

By summing now on the number of final-state photons, one obtains the cross section for
the original process accompanied by an arbitrary number of real photons, namely

dσ(∞)
r =

∞
∑

l=0

dσ(l)
r

= dσ0 exp

[

kdkd cos ϑdϕ
1

2(2π)3

∑

ε

e2

(

ε(k) · p2

k · p2
− ε(k) · p1

k · p1

)2
]

.(202)

Equation (202), being limited to real radiation only, is IR divergent once the phase space
integrations are performed down to zero photonic energy. This problem, as well known,
finds its solution in the matching between real and virtual photonic radiation. At any
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Fig. 64. – The Feynman diagram for the photonic vertex-like correction.

rate, eq. (202) already shows the key feature of exclusive exponentiation, i.e. summing
up all the perturbative contributions before performing any phase space integration.

In order to get meaningful radiative corrections, besides initial-state real photon
corrections it is necessary to consider also initial-state virtual photon corrections, i.e. the
corrections due to additional internal photon lines connecting the initial-state electron
and positron (see Fig. 64). For a vertex-type amplitude, the result can be written as

MV1
= −i

e2

(2π)4

∫

d4k
1

k2 + iε
v̄(p1)γµ −(/p1 + /k) + m

2p1 · k + k2 + iε

× Γ
(/p2 + /k) + m

2p2 · k + k2 + iε
γµu(p2),(203)

where Γ stands for the Dirac structure competing to the lowest order process, in such a
way that M0 = v̄(p1)Γu(p2). The soft-photon part of the amplitude can be extracted by
taking kµ ≃ 0 in all the numerators. In this approximation, the amplitude of eq. (203)
becomes

MV1
= M0 × V

V =
2iα

(2π)3

∫

d4k
1

k2 + iε

4p1 · p2

(2p1 · k + k2 + iε)(2p2 · k + k2 + iε)
.(204)

Some comments are in order here. First, as in the real case, the IR virtual correction
factorizes off the lowest order matrix element, so that it is universal, i.e. independent of
the details of the lowest order process under consideration. Moreover, it is also free of
ultraviolet (UV) infinities; this, of course, does not mean that the UV behaviour of the
complete amplitude is irrelevant, but that the IR part can be treated independently of
renormalization problems. Last, as in the real case, it is divergent in the IR portion of
the phase space.

The correction given by n soft virtual photons can be seen to factorize with an
additional 1/n! factor [351], namely

MVn
= M0 ×

1

n!
V n,(205)
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so that by summing over all the additional soft virtual photons one obtains

MV = M0 × exp[V ].(206)

As already noticed, both the real and virtual factors are IR divergent. In order to
obtain meaningful expressions, one has to adopt some regularization procedure. One
possible regularization procedure is to give the photon a (small) mass λ and modifying
eqs. (201) and (204) accordingly. Once all the expressions are properly regularized,
one can write down the YFS master formula, which takes into account real and virtual
photonic corrections to the lowest order process. In virtue of the factorization properties
discussed above, the master formula can be obtained from eq. (202) with the substitution
dσ0 → dσ0| exp(V )|2, i.e.

dσ = dσ0| exp(V )|2 exp

[

kdkd cos ϑdϕ
1

2(2π)3

∑

ε

e2

(

ε(k) · p2

k · p2
− ε(k) · p1

k · p1

)2
]

.(207)

As a last step, it is possible to perform analytically the IR cancellation between virtual
and very soft real photons. Actually, since very soft real photons do not affect the
kinematics of the process, the real photon exponent can be split into a contribution
coming from photons with energy less than a cutoff kmin plus a contribution coming from
photons with energy above the same cutoff. The first contribution can be integrated over
all its phase space and then combined with the virtual exponent. The physical meaning
of this procedure is to sum over all the degenerate final states: in fact, a very soft real
photon produces a signature that is indistinguishable from the signature typical of the
elastic event. After this step it is possible to remove the regularizing photon mass by
taking the limit λ → 0, so that eq. (207) becomes

dσ = dσ0 exp(Y ) exp

[

kdkdΘ(k − kmin) cos ϑdϕ
1

2(2π)3

∑

ε

e2

(

ε(k) · p2

k · p2
− ε(k) · p1

k · p1

)2
]

,

(208)
where Y is given by

Y = 2V +

∫

kdkdΘ(kmin − k) cosϑdϕ
1

2(2π)3

∑

ε

e2

(

ε(k) · p2

k · p2
− ε(k) · p1

k · p1

)2

.(209)

The explicit form of Y can be derived by performing all the details of the calculation,
and reads

Y = β ln
kmin

E
+ δY FS ,

δY FS =
1

4
β +

α

π

(

π2

3
− 1

2

)

,

β =
2α

π

[

ln

(

s

m2
e

)

− 1

]

.(210)

As in the SF method, the method of YFS exclusive exponentiation has been refined
in order to take into account all-orders corrections on top of finite-order exact results
(see for instance ref. [28] and references therein).
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Fig. 65. – The fermionic vacuum polarization Feynman graph.

B. – Vacuum Polarization Corrections

The input parameter adopted for the analysis of the precision electroweak data
collected at LEP are the QED coupling constant at zero momentum transfer α, the
Fermi constant Gµ and the Z-boson mass MZ . Given these input parameters, all the
other unknown (or poorly known) parameters, such as the top-quark mass, the Higgs-
boson mass and the QCD coupling constant αs, are determined by means of best fits.

Actually, the QED coupling constant α is known with great precision at zero mo-
mentum transfer from measurements such as the electron/muon g − 2, the Lamb shift,
the muonium hyperfine splitting, the neutron compton wavelength, the quantum Hall
and the Josephson effects [354,355]; but for precision physics at LEP it must be evolved
up to the Z-boson mass scale, so that the relevant parameter is rather the running QED
coupling constant α(s). As is well known, the running of α is largely dominated by the
contribution of fermionic vacuum polarization diagrams, which represent by themselves a
gauge-invariant and universal subset of radiative corrections for two-fermion production
processes (see Fig. 65). The bosonic contribution to vacuum polarization is, on the con-
trary, gauge-dependent. Its contribution is small, at least around the Z0 resonance, and
can be taken into account together with other gauge- and process-dependent radiative
corrections at a given perturbative order. From now on, only the fermionic contribution
to vacuum polarization will be discussed.

The QED running coupling constant is given by

α(s) =
α(0)

1 − ∆α(s)
,

∆α(s) = −4πα(0)Re [Πγ(s) − Πγ(0)] ,(211)

where Π(q2) is the two-point electromagnetic correlator, given by

(qµqν − q2gµν)Πγ(q2) = i

∫

d4xeiq·x〈0|T (jµ(x)jν(0))|0〉.(212)

The vacuum polarization contribution can be naturally split into the contributions
coming from the leptons, the light hadrons and the top quark according to the following
relation:

∆α(s) = ∆αl(s) + ∆α
(5)
h (s) + ∆αt(s).(213)
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Fig. 66. – The integration contour C to be used for the integral of eq. (217) in order to obtain
the dispersion relation of eq. (218).

The contributions from leptons and top-quark loops can be safely computed by
means of ordinary perturbation theory. In particular, the leptonic contributions can be
very well approximated by the expression of the loop-integrals for m2

l << s, and read

∆αl(s) =
α(0)

3π

∑

l

(

ln
s

m2
l

− 5

3

)

.(214)

On the other hand, the top-quark contribution, due to the decoupling properties of QED,
can be represented by

∆αt(s) = −α(0)

3π

4

15

s

m2
t

.(215)

In particular, eqs. (214) and (215), when evaluated at s = M2
Z give the values

∆αl(M
2
Z) = 0.03142,

∆αt(M
2
Z) = −0.6 × 10−4.(216)

For the light-quark contributions, on the contrary, the perturbative expression of
eq. (214) cannot be used. In fact, due to the ambiguities inherent in the definition
of the light-quark masses, the answer provided by eq. (214) is affected by very large
uncertainties, proportional to δmq/mq. Moreover, one can a priori expect very large
non-perturbative QCD corrections in the region of the hadronic resonances. The stan-
dard procedure adopted in order to circumvent this problem is to exploit the analyticity
properties of the vacuum polarization amplitudes by making use of dispersion relations
(DR) techniques (see for instance [357]).

Given a complex-valued function F of complex argument s, if F is olomorphic in a
region R and on its boundary C, the value of F at any point q2 inside R can be computed,
according to the Cauchy’s integral representation, as a contour integral:

F (q2) =
1

2πi

∮

C
ds

F (s)

s − q2
.(217)

Under the assumption that
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Fig. 67. – The total cross section for the process e+e− → hadrons, normalized to the total cross
section for the process e+e− → µ+µ− at low centre of mass energy (from [356]).

• F (s) is real for real s, up to a threshold M2,

• F (s) has a branch cut for real s > M2,

• F (s) is olomorphic except along the branch cut,

and taking as integration contour the one shown in Fig. 66, one can derive the following
once-subtracted DR

F (q2) = F (q2
0) +

q2 − q2
0

π

∫ ∞

M2

ds

s − q2
0

ImF (s)

s − q2 − iε
.(218)

Equation (218) allows one to compute the value of F at any point q2 with the only
knowledge of the imaginary part of F along the branch cut. The optical theorem provides
the link between the absorptive part of the hadronic vacuum polarization amplitude and
the total cross section for the reaction e+e− → hadrons, namely

σ(s) =
16π2α2(s)

s
ImΠγ(s).(219)
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Fig. 69. – The relative contributions to ∆α(s = M2
Z) in magnitude and uncertainty (from [356]).

Hence, from the experimental data for e+e− → hadrons (see Fig. 67) one can compute
the hadronic contribution of the hadronic vacuum polarization as follows:

∆α
(5)
h (s) = − s

4π2α
Re

∫ ∞

4m2
π

ds′
σh(s′)

s′ − s − iε
.(220)

Several determinations of the hadronic contribution to the running of the QED
coupling constant α have been performed [356, 358–367]. The differences between the
various determinations can be traced back to the procedures adopted for fitting the
data, treating the experimental errors and performing the numerical integrations. The
differences are also determined by the different thresholds chosen to start the application
of perturbative QCD at large s, and to the value used for αs(MZ). Figures 68 and 69
show the relative contributions to ∆α in magnitude and uncertainty at a scale typical of
the luminosity measurement (Fig. 68) and at the Z0 peak (Fig. 69). In Fig. 70 several
determinations of ∆α(MZ) and α−1(MZ) are shown, together with the value used by
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Fig. 70. – The determinations of ∆α
(5)
h

(MZ) and α−1(MZ). The dashed vertical line selects the
value used by the LEP Collaborations.

the LEP Collaborations.(9)
For practical purposes, the running of the QED coupling constant for large time-

like momenta can be computed by means of the following effective formula, in terms of
fermion masses and effective light-quark masses:

∆α(s) =
α(0)

3π

∑

f

Q2
fNcf

(

ln
s

m2
f

− 5

3

)

.(221)

In eq. (221), the sum is extended to all light fermions (charged leptons and light quarks),
Qf is the fermion charge in units of the electron charge and Ncf is 1 for leptons and 3
for quarks. The effective light-quark masses md = mu = 47 MeV, ms = 150 MeV, mc =
1.55 GeV and mb = 4.7 GeV insure that the hadronic vacuum polarization contribution
of refs. [356, 364] is reproduced.

C. – One-loop Integrals and Dimensional Regularization

The evaluation of one-loop diagrams generally leads to the problem of ultraviolet di-
vergences, so that a regularization procedure has to be adopted in order to deal with well

(9) Two new determinations of α(MZ ) have recently appeared [368, 369] giving α−1(MZ ) = 128.923 ±

0.036 and α−1(MZ ) = 128.98 ± 0.06, respectively. After the completion of this work, a further analysis
of α(MZ ) has been performed in [370], yelding the result α−1(MZ) = 128.928 ± 0.023.
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defined objects before implementing a renormalization program. As said in Sect. 3
.
2.1

the method commonly used in the case of gauge theories is the dimensional regulariza-
tion [45–47], where the singularities arise as poles of the form 1/(4 − n), n being the
number of space time dimensions where the integrals are convergent. In the literature
a general method has been developed [48], which allows to write every loop diagram in
terms of certain combinations of scalar form factors [49]. In this appendix some technical
details concerning this procedure are provided for the simple case of the two-point form
factors. In the evaluation of a self-energy diagram the following integrals are encountered:

B0; Bµ; Bµν(p2, m1, m2) =
1

iπ2

∫

dnq
1; qµ; qµν

(q2 + m2
1)((q + p)2 + m2

2)
.(222)

The vector and tensor integrals can be decomposed into Lorentz covariants and scalar
coefficients:

Bµ(p2, m1, m2) = pµB1(p2.m1, m2),(223)

Bµν(p2, m1, m2) = pµpνB21(p2, m1, m2) + δµνB22(p2, m1, m2).(224)

The functions B1, B21 and B22 are algebraically related to the two-point scalar integral
B0 and to the one-point scalar integral A(m), defined by

A(m) =
1

iπ2

∫

dnq
1

q2 + m2
.(225)

The expression for B1 can be obtained multiplying eq. (223) by pµ and taking into
account of the identity

q · p =
1

2

[

(q + p)2 + m2
2 − (q2 + m2

1) − p2 − m2
2 + m2

1

]

.(226)

It follows that

B1 =
1

2p2

[

A(m1) − A(m2) − (p2 + m2
2 − m2

1)B0

]

,(227)

where the arguments have been omitted for simplicity of notation. The expressions for
B21 and B22 are analogously obtained multiplying eq. (224) by pµpν and δµν :

B22 =
1

3

{

−m2
1B0 +

1

2
[A(m2) − (m2

1 + m2
2 +

1

3
p2) − (m2

1 − m2
2 − p2)B1]

}

,(228)

B21 =
1

3p2

[

A(m2) + 2(m2
1 − m2

2 − p2)B1 +
1

2
(m2

1 + m2
2 +

1

3
p2) + m2

1B0

]

.(229)

In so doing only the basic scalar integrals A(m) and B0(p2, m1, m2) need to be calculated.
Let us consider the one-point integral A(m) in four dimensions:

A(m) =
1

iπ2

∫ ∞

0

dq0

∫

d3q
1

q2 + m2 − iε
.(230)

In the complex q0 plane the integrand has poles for

q0 = ±
(

√

|q|2 + m2 − iε
)

.(231)
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The introduction of the Wick rotation allows to transform the Minkowski space in a
Euclidean space and perform the integration by means of polar coordinates.

Working in Euclidean space in the case of n dimensions, a set of generalized polar
coordinates can be introduced [47, 371]

∫

dnq =

∫ ∞

0

ωn−1dω

∫ 2π

0

dϑ1

∫ π

0

sin ϑ2dϑ2 . . .

∫ π

0

sinn−2 ϑn−1dϑn−1.(232)

Since the integrand of A(m) depends only on q2, the angular integrations are easily
performed by means of the relation

∫ π

0

sinm ϑdϑ =
√

π
Γ
(

m+1
2

)

Γ
(

m+2
2

) ,(233)

yielding

A(m) =
2π

n
2
−2

Γ
(

n
2

)

∫ ∞

0

ωn−1dω
1

ω2 + m2
(234)

=
2π

n
2
−2

Γ
(

n
2

) · 1

2
· Γ
(

n
2

)

Γ
(

1 − n
2

)

Γ(1)m2(1−n
2 )

(235)

=
π

n
2
−2

m2−n
Γ
(

1 − n

2

)

,(236)

where Γ(x) is the Euler Γ function with the property xΓ(x) = Γ(x + 1). Since the
physical results are recovered for n approaching 4, it is convenient to introduce the
notation n = 4 − ε, and expand the expression of A(m) around ε = 0:

A(m) = m2π− ε
2 m−ε Γ

(

ε
2

)

−1 + ε
2

(237)

≃ m2
(

−∆ + ln m2 − 1
)

,(238)

where

∆ =
2

4 − n
− γ − ln π(239)

contains the ultraviolet divergence, and the expansion of the Γ function around the zero
of its argument has been used

Γ(x) =
1

x
− γ + O(x),(240)

with γ indicating the Euler constant.
The calculation of the two-point scalar integral B0 is more involved than A(m)

because of the presence of two factors in the denominator. As a first step it is necessary
to use the Feynman parameterization to combine the denominators:

1

ab
=

∫ 1

0

dx
1

[ax + b(1 − x)]2
,(241)

where

b = q2 + m2
1,

a = (q + p)2 + m2
2.
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With a shift in the integration variable q → q + xp the term linear in the integration
variable disappears, yielding

B0(p2, m1, m2) =
1

iπ2

∫ 1

0

dx

∫

dnq
1

(q2 + χ − iε)2
,(242)

with χ = −p2x2 +(p2 +m2
2−m2

1)x+m2
1. The angular integration is now straightforward

and the last integral is again worked out in terms of the Γ function:

B0(p2, m1, m2) =
π

n
2
−2

χ2−n
2

Γ
(

2 − n
2

)

Γ(2)
.(243)

By means of an expansion of n around 4 as for the case of the one-point scalar integral,
the expression for B0 reads:

B0(p2, m1, m2) = ∆ −
∫ 1

0

dx ln χ.(244)

For arbitrary values of momentum and masses the integral in eq. (244) can be worked
out by means of the method outlined in ref. [50]. The integration becomes straightforward
for particular values of the arguments. For example, to obtain the asymptotic expressions
of the fermionic self-energies written in Sect. 3

.
2.1, the following asymptotic expressions

for the B0 scalar function are useful:

B0(p2, m, m)|p2|≫m2 ≃ ∆ − ln(−p2) + 2 + iπ,

B0(p2, m, m)|p2|≪m2 ≃ ∆ − ln m2 − p2

6m2
+

p4

60m4
,

B0(p2, 0, m)|p2|≫m2 ≃ ∆ − ln(−p2) + 2 + iπ,

B0(p2, 0, m)|p2|≪m2 ≃ ∆ − ln m2 + 1 − p2

2m2
.

Concerning the vertex correction diagrams, the following three-point integrals are
encountered:

C0; Cµ; Cµν(p1, p2, m1, m2, m3) =
1

iπ2

∫

dnq
1; qµ; qµν

(1)(2)(3)
,(245)

where

(1) = q2 + m2
1,

(2) = (q + p1)2 + m2
2,

(3) = (q + p1 + p2)2 + m2
3.

The vector and tensor integrals can be decomposed into Lorentz covariants and
scalar coefficients in the following way:

Cµ = pµ
1C11 + pµ

2C12,

Cµν = pµ
1pν

1C21 + pµ
2pν

2C22 + (pµ
1pν

2 + pµ
2pν

1)C23 + δµνC24,

where the arguments in the functions Cij have been neglected for simplicity of notations.
According to the procedure illustrated in ref. [48], the three-point scalar form factors
can be expressed as linear combinations of two-point functions and of the fundamental
three-point scalar integral C0. It is worth noticing that only the function C24 contains
the UV divergences, while the other form factors are UV finite.
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[27] M. Caffo, H. Czyż and E. Remiddi, in [14], p. 361.

[28] S. Jadach, E. Richter-Wa̧s, B.F.L. Ward and Z. Wa̧s, Phys. Lett. B, 353,
(1995) 362, Comput. Phys. Commun., 70, (1992) 305.

[29] S. Jadach, W. P laczek, E. Richter-Wa̧s, B.F.L. Ward and Z. Wa̧s, Com-
put. Phys. Commun., 102, (1997) 229.

[30] A. Arbuzov et al., Nucl. Phys. Proc. Suppl., 51C, (1996) 154, Nucl. Phys. B,
485, (1997) 457, Phys. Lett. B, 394, (1997) 218.

[31] F.A. Berends and R. Kleiss, Nucl. Phys. B, 228, (1983) 537.

[32] M. Greco, G. Montagna, O. Nicrosini and F. Piccinini, Phys. Lett. B, 318,
(1993) 635; G. Montagna, O. Nicrosini and F. Piccinini, Comput. Phys. Com-
mun., 78, (1993) 155; erratum, 79, (1994), 351.

[33] M. Cacciari, A. Deandrea, G. Montagna, O. Nicrosini and L. Trenta-
due, Phys. Lett. B, 268, (1991) 441, 271, (1991), 431.

[34] A. Arbuzov et al., Phys. Lett. B, 383, (1996) 238.

[35] S. Jadach, M. Melles, B.F.L. Ward and S.A. Yost, Nucl. Phys. Proc. Suppl.,
51C, (1996) 164.

[36] S. Jadach and B.F.L. Ward, Phys. Lett. B, 389, (1996) 129.

[37] S. Jadach, M. Melles, B.F.L. Ward and S.A. Yost, Phys. Lett. B, 377,
(1996) 168.

[38] S. Jadach et al., in Proceedings of the 28th International Conference on High
Energy Physics, edited by Z. Ajduk and A.K. Wroblewski, (World Scientific,
Singapore, 1997), Vol. II, p. 1072.

[39] B.F.L. Ward et al., Acta Phys. Pol. B, 28, (1997) 925.

[40] S. Jadach, B.F.L. Ward and S.A. Yost, Phys. Rev. D, 47, (1993) 2682.

[41] R. Barbieri, J.A. Mignaco and E. Remiddi, Nuovo Cimento, 11A, (1972) 824,
865.

[42] E.A. Kuraev and V. Fadin, Sov. J. Nucl. Phys., 41, (1985) 466.

[43] M. Greco, Rivista del Nuovo Cimento Vol., 11, N. 5, (1988) 1.

[44] G. ’t Hooft, Nucl. Phys. B, 33, (1971) 173; Nucl. Phys. B, 35, (1971) 167.

[45] C. Bollini and J. Giambiagi, Nuovo Cim. B, 12, (1972) 20.

[46] J. Ashmore, Nuovo Cim. Lett., 4, (1972) 289.

[47] G. ’t Hooft and M. Veltman, Nucl. Phys. B, 44, (1972) 189.

[48] G. Passarino and M. Veltman, Nucl. Phys. B, 160, (1979) 151.

[49] G. ’t Hooft and M. Veltman, Nucl. Phys. B, 153, (1979) 365.

[50] M. Green and M. Veltman, Nucl. Phys. B, 169, (1980) 137.

[51] G. Passarino, Nucl. Phys. B, 361, (1991) 351.

[52] T. Appelquist and J. Carazzone, Phys. Rev. D, 11, (1975) 2856.



148 G. MONTAGNA, O. NICROSINI and F. PICCININI

[53] A. Akhundov, D. Bardin and T. Riemann, Nucl. Phys. B, 276, (1986) 1;
W. Beenakker and W. Hollik, Z. Phys. C, 40, (1988) 1; J. Bernabéu,
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Phys. Lett. B, 214, (1988) 621; D. Bardin and A.V. Chizhov, Dubna preprint
E2-89-525 (1989); B.A. Kniehl, Nucl. Phys. B, 347, (1990) 86; F. Halzen and
B.A. Kniehl, Nucl. Phys. B, 353, (1991) 567; B.A. Kniehl and A. Sirlin,
Nucl. Phys. B, 371, (1992) 141, Phys. Rev D, 47, (1993) 883; S. Fanchiotti,
B.A. Kniehl and A. Sirlin, Phys. Rev D, 48, (1993) 307; A. Djouadi and
P. Gambino, Phys. Rev. D, 49, (1994) 3499; N.A. Nekrasov, V.A. Novikov,
L.B. Okun and M.I. Vysotsky, Yad. Fiz., 57, (1994) 883.

[94] L. Avdeev, J. Fleischer, S.M. Mikhailov and O.V. Tarasov, Phys. Lett. B,
336, (1994) 560, erratum 349, (1995), 597; K.G. Chetyrkin, J.H. Kühn and
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