The nucleon response to an external probe

Sigfrido Boffi

3

- inclusive deep inelastic scattering
- parton distributions
- semi-inclusive deep inelastic scattering
- transverse momentum dependent distributions
- deeply virtual Compton scattering
- generalized parton distributions

(inclusive) deep inelastic scattering (DIS)

$$\frac{d^2\sigma}{d\Omega \ dE'} = \frac{\alpha^2}{2MQ^4} \ \frac{E'}{E} \ L_{\mu\nu} \ W^{\mu\nu}$$

cross section: $d\sigma = \frac{1}{\mathcal{F}} |\mathcal{M}|^2 d\mathcal{R}$ incident flux: $\mathcal{F} = 4\sqrt{(P \cdot l)^2 - M^2 m^2}$ phase space element: $d\mathcal{R} = (2\pi)^4 \delta^4 (l + P - l' - P_X) \frac{d^3 P_X}{(2\pi)^3 2 P_X^0} \frac{d^3 l'}{(2\pi)^3 2 E'}$ invariant amplitude: $\mathcal{M} = \overline{u}(l', s') \gamma^{\mu} u(l, s) \frac{e^2}{Q^2} \langle P_X | J_{\mu}(0) | P, S \rangle$ lepton tensor: $L_{\mu\nu}(l, s; l', s') = [\overline{u}(l', s') \gamma_{\mu} u(l, s)]^* [\overline{u}(l', s') \gamma_{\nu} u(l, s)]$ hadron tensor: $W_{\mu\nu}(q; P, S) = \frac{1}{2\pi} \int \frac{d^3 P_X}{(2\pi)^3 2 P_Y^0} (2\pi)^4 \delta^4(q + P - P_X) \langle P, S | J_{\mu}(0) | P_X \rangle \langle P_X | J_{\nu}(0) | P, S \rangle$

the lepton tensor

$$L_{\mu\nu}(I, s; I', s') = L_{\mu\nu}^{(5)}(I; I') + iL_{\mu\nu}^{(A)}(I, s; I') + L_{\mu\nu}^{'(5)}(I, s; I', s') + iL_{\mu\nu}^{'(A)}(I; I', s')$$

$$\begin{split} L_{\mu\nu}^{(S)}(l;l') &= l_{\mu}l'_{\nu} + l'_{\mu}l_{\nu} - g_{\mu\nu} (l \cdot l' - m^{2}) \\ L_{\mu\nu}^{(A)}(l,s;l') &= m \varepsilon_{\mu\nu\alpha\beta} s^{\alpha} (l - l')^{\beta} \\ &= \lambda \varepsilon_{\mu\nu\alpha\beta} l^{\alpha} q^{\beta} \\ L_{\mu\nu}^{'(S)}(l,s;l',s') &= (l \cdot s') (l'_{\mu}s_{\nu} + s_{\mu}l'_{\nu} - g_{\mu\nu} l' \cdot s) \\ &- (l \cdot l' - m^{2}) (s_{\mu}s'_{\nu} + s'_{\mu}s_{\nu} - g_{\mu\nu} s \cdot s') \\ &+ (l' \cdot s)(s'_{\mu}l_{\nu} + l_{\mu}s'_{\nu}) - (s \cdot s')(l_{\mu}l'_{\nu} + l'_{\mu}l_{\nu}) \\ L_{\mu\nu}^{'(A)}(l;l',s') &= m \varepsilon_{\mu\nu\alpha\beta} s'^{\alpha}(l - l')^{\beta} \\ &= \lambda \varepsilon_{\mu\nu\alpha\beta} l'^{\alpha} q^{\beta} \end{split}$$

the hadron tensor

$$W_{\mu\nu}(q;P,S) = W^{(S)}_{\mu\nu}(q;P) + i W^{(A)}_{\mu\nu}(q;P,S)$$

the DIS cross section

$$\frac{d^{2}\sigma}{d\Omega \ dE'}(I, s, P, S; I', s') = \frac{\alpha^{2}}{2MQ^{4}} \frac{E'}{E} \left[L_{\mu\nu}^{(S)} \ W^{\mu\nu(S)} + L_{\mu\nu}^{'(S)} \ W^{\mu\nu(S)} - L_{\mu\nu}^{(A)} \ W^{\mu\nu(A)} - L_{\mu\nu}^{'(A)} W^{\mu\nu(A)} \right]$$

• unpolarized cross section proportional to $W^{\mu\nu(S)}$:

$$\frac{d^2 \sigma^{\text{unp}}}{d\Omega \, dE'} \left(I, P; I' \right) = \frac{1}{4} \sum_{s, s', S} \frac{d^2 \sigma}{d\Omega \, dE'} \left(I, s, P, S; I', s' \right) = \frac{\alpha^2}{2MQ^4} \frac{E'}{E} 2L_{\mu\nu}^{(S)} W^{\mu\nu(S)}$$

• differences of cross sections single out $W^{\mu\nu(A)}$ term:

$$\sum_{s'} \left[\frac{d^2 \sigma}{d\Omega \, dE'}(I, s, P, -S; I', s') - \frac{d^2 \sigma}{d\Omega \, dE'}(I, s, P, S; I', s') \right] = \frac{\alpha^2}{2MQ^4} \frac{E'}{E} 4L^{(A)}_{\mu\nu} W^{\mu\nu(A)}$$

• if target spin unobserved (only two independent vectors q^{μ} , P^{μ})

$$\frac{1}{2M} W^{(S)}_{\mu\nu} = \frac{1}{2M} W^{(S)}_{\nu\mu}
= -W_1 g_{\mu\nu} + W_2 \frac{1}{M^2} P_{\mu} P_{\nu} + W_3 \frac{1}{M^2} q_{\mu} q_{\nu} + W_4 \frac{1}{M^2} (P_{\mu} q_{\nu} + q_{\mu} P_{\nu})
\frac{1}{2M} W^{(A)}_{\mu\nu} = -\frac{1}{2M} W^{(A)}_{\nu\mu}
= W_5 \frac{1}{M^2} (P_{\mu} q_{\nu} - q_{\mu} P_{\nu})$$
N.B. $W_i \equiv W_i (P \cdot q, Q^2)$

• gauge invariance (current conservation, i.e. $q^{\mu}J_{\mu}=0$) $\implies q^{\mu}W^{(S)}_{\mu\nu}=q^{\mu}W^{(A)}_{\mu\nu}=0$

$$-W_1 q^{\nu} + W_2 \frac{1}{M^2} q \cdot P P^{\nu} + W_3 \frac{1}{M^2} q_{\mu}^2 q^{\nu} + W_4 \frac{1}{M^2} (q \cdot P q^{\nu} + q_{\mu}^2 P^{\nu}) = 0$$
$$W_5 \frac{1}{M^2} (q \cdot P q^{\nu} - q_{\mu}^2 P^{\nu}) = 0$$

i.e.

$$-W_{1} + W_{3} \frac{1}{M^{2}} q_{\mu}^{2} + W_{4} \frac{1}{M^{2}} q \cdot P = 0$$

$$W_{2} \frac{1}{M^{2}} q \cdot P + W_{4} \frac{1}{M^{2}} q_{\mu}^{2} = 0$$

$$W_{5} = 0$$

$$W_5 = 0 \implies W_{\mu\nu}^{(A)} = 0$$

$$W_4 = -W_2 \frac{q \cdot P}{q_{\mu}^2}, \quad W_3 = W_2 \left(\frac{q \cdot P}{q_{\mu}^2}\right)^2 + W_1 M^2 \frac{1}{q_{\mu}^2}$$

$$rac{1}{2M} W_{\mu
u} = rac{1}{2M} W^{(S)}_{\mu
u} = - W_1 \, ilde{g}_{\mu
u} + W_2 \, rac{1}{M^2} \, ilde{P}_\mu ilde{P}_
u$$

where

$$ilde{g}^{\mu
u}=g^{\mu
u}-rac{q^\mu q^
u}{q_\lambda^2}, \quad ilde{P}^\mu=P^\mu-rac{P\cdot q}{q_\lambda^2}\,q^\mu$$

$$\implies \frac{d^2 \sigma^{\rm unp}}{d\Omega \ dE'} = \frac{4\alpha^2 E'^2}{Q^4} \left[2W_1 \sin^2 \frac{1}{2}\theta + W_2 \cos^2 \frac{1}{2}\theta \right]$$

Similarly, including spin d.o.f.,

-

$$\frac{1}{2M} W^{(A)}_{\mu\nu}(q; P, S) = \varepsilon_{\mu\nu\alpha\beta} q^{\alpha} \left\{ MS^{\beta} G_{1}(P \cdot q, Q^{2}) + \left[(P \cdot q)S^{\beta} - (S \cdot q)P^{\beta} \right] \frac{G_{2}(P \cdot q, Q^{2})}{M} \right\}$$

$$\sum_{s'} \left[\frac{d^2 \sigma}{d\Omega \, dE'} (I, s, P, S; I', s') - \frac{d^2 \sigma}{d\Omega \, dE'} (I, s, P, -S; I', s') \right] \equiv \frac{d^2 \sigma^{s, S}}{d\Omega \, dE'} - \frac{d^2 \sigma^{s, -S}}{d\Omega \, dE'}$$
$$= \frac{8m\alpha^2}{Q^4} \frac{E'}{E} \left\{ \left[(q \cdot S)(q \cdot s) + Q^2(s \cdot S) \right] MG_1 + Q^2 \left[(s \cdot S)(P \cdot q) - (q \cdot S)(P \cdot s) \right] \frac{G_2}{M} \right\},$$

the Bjorken limit

$$-q^2 = Q^2 \to \infty$$
 $\nu = E - E' \to \infty$ $x = \frac{Q^2}{2P \cdot q} = \frac{Q^2}{2M\nu}$ (fixed)

$$\lim_{B_{j}} M W_{1}(P \cdot q, Q^{2}) = F_{1}(x)$$

$$\lim_{B_{j}} \nu W_{2}(P \cdot q, Q^{2}) = F_{2}(x)$$

$$\lim_{B_{j}} M^{2} \nu G_{1}(P \cdot q, Q^{2}) = g_{1}(x)$$

$$\lim_{B_{j}} M \nu^{2} G_{2}(P \cdot q, Q^{2}) = g_{2}(x)$$

$$F_{\rm L} = F_2 \left(1 + \frac{4M^2x^2}{Q^2}\right) - 2xF_1 \rightarrow F_2 - 2xF_1$$

The ZEUS NLO QCD fit compared to ZEUS 96/97 and proton fixed-target F2 data. Chekanov et al., PR D 67 (2003) 012007

The longitudinal structure function FL from ZEUS NLO QCD fit. Chekanov et al., PR D 67 (2003) 012007

extracting spin structure functions from data

$$A_{\parallel} \equiv \frac{d\sigma^{\rightarrow \leftarrow} - d\sigma^{\rightarrow \Rightarrow}}{d\sigma^{\rightarrow \Rightarrow} + d\sigma^{\rightarrow \leftarrow}} = \frac{Q^2 \left[(E + E' \cos \theta) M G_1 - Q^2 G_2 \right]}{2EE' \left[2W_1 \sin^2 \frac{1}{2}\theta + W_2 \cos^2 \frac{1}{2}\theta \right]}$$

$$A_{\perp} \equiv \frac{d\sigma^{\rightarrow \Downarrow} - d\sigma^{\rightarrow \Uparrow}}{d\sigma^{\rightarrow \Uparrow} + d\sigma^{\rightarrow \Downarrow}} = \frac{Q^2 \sin \theta (MG_1 + 2EG_2)}{2E \left[2W_1 \sin^2 \frac{1}{2}\theta + W_2 \cos^2 \frac{1}{2}\theta\right]} \cos \phi$$

with $S^{\mu}=S^{\mu}_{\parallel}+S^{\mu}_{\perp}$

$$\frac{1}{2M}W^{(A)}_{\mu\nu}(q;P,S) = \varepsilon_{\mu\nu\alpha\beta} q^{\alpha} \left\{ \frac{MS^{\beta}G_{1} + \left[(P \cdot q)S^{\beta} - (S \cdot q)P^{\beta} \right] G_{2}}{M} \right\}$$
$$\rightarrow_{Bj} \frac{1}{P \cdot q} \varepsilon_{\mu\nu\alpha\beta} q^{\alpha} \left[S^{\beta}_{\parallel} g_{1} + S^{\beta}_{\perp} (g_{1} + g_{2}) \right]$$

i.e.

 g_1 describes the longitudinal polarization, g_1+g_2 describes the transverse polarization From

$$g_2(x) = \int_x^1 \frac{dy}{y} g_1(y) - g_1(x)$$

$$\implies \int_0^1 dx \, x^{J-1} \left\{ \frac{J-1}{J} \, g_1(x) + g_2(x) \right\} = 0 \qquad \text{Wandzura-Wilczek sum rule}$$

$$\int_{0}^{1} dx \, g_{2}(x) = 0 \qquad \text{Burkhardt-Cottingham sum rule}$$

Left panel: HERMES results on xg_1^p and xg_1^d vs. x. Right panel: xg_1^n from data for g_1^p and g_1^d (top), the x-weighted non-singlet spin structure function xg_1^{NS} obtained by HERMES (bottom). Airapetian *et al.*, hep-ex/0609039.

Left (right) panel: the world data on xg_1 (g_1). taken from Bass, RMP 77 (2005) 1257

◆□▶ ◆□▶ ★ □▶ ★ □▶ - □ - つへで

x

Left panel: the SLAC data for xg_2 for the proton and deuteron as a function of Q^2 for selected values of x. Data are from E155-03 (solid), E143 (open diamond) and E155-99 (open square). The curves show the twist-two xg_2^{WW} (solid) and the bag model calculation by Stratmann (dash-dot). Right panel: the Q^2 -averaged structure function xg_2 from E155-03 (solid circle), E143 (open diamond) and E155-99. Also shown is the twist-two g_2^{WW} at the average Q^2 of E155-03 at each value of x (solid line), the bag model calculations by Stratmann (dash-dot-dot) and Song (dot) and the chiral soliton model of Weigel and Gamberg (dash-dot) and Wakamatsu (dash). Anthony *et al.*, PI B 553 (2003) 18

light-cone dominance in DIS

$$\begin{split} W_{\mu\nu}(q;P,S) &= \frac{1}{2\pi} \int \frac{d^3 P_X}{(2\pi)^3 2P_X^0} (2\pi)^4 \delta^4(q+P-P_X) \langle P,S | J_\mu(0) | P_X \rangle \langle P_X | J_\nu(0) | P,S \rangle \\ J_\mu(\xi) &= e^{i\hat{P}\cdot\xi} J_\mu(0) e^{-i\hat{P}\cdot\xi} \implies \langle P,S | J_\mu(0) | P_X \rangle = e^{i\xi\cdot(P-P_X)} \langle P,S | J_\mu(\xi) | P_X \rangle \\ W_{\mu\nu}(q,P) &= \frac{1}{2} \sum_S W_{\mu\nu}(q;P,S) = \frac{1}{2\pi} \int d^4\xi \, e^{i\xi\cdot q} \langle P | J_\mu(\xi) J_\nu(0) | P \rangle \\ &= \frac{1}{2\pi} \int d^4\xi \, e^{i\xi\cdot q} \langle P | [J_\mu(\xi), J_\nu(0)] | P \rangle \\ &= 2\pi \operatorname{Im} T_{\mu\nu} \end{split}$$

virtual Compton scattering

$$T_{\mu\nu} = i \int d^{4}\xi \ e^{i\xi \cdot q} \langle P|T[J_{\mu}(\xi)J_{\nu}(0)]|P \rangle$$

$$q^{\mu} = (\nu, 0, 0, -\sqrt{\nu^{2} + Q^{2}}) \xrightarrow{B_{j}} (\nu, 0, 0, -\nu - Mx)$$

$$q^{+} = -\frac{Mx}{\sqrt{2}} \text{ fixed}, \quad q^{-} = \frac{2\nu + Mx}{\sqrt{2}} \rightarrow \sqrt{2} \nu \rightarrow \infty$$

$$\exp(iq \cdot \xi) \rightarrow \exp(iq^{+}\xi^{-}) \implies \xi^{+} \rightarrow 0, \xi_{T} \rightarrow 0$$

$$Jaffe, 1986$$

the quark-quark correlation function

$$\begin{split} W_{\mu\nu}(q;P,S) &= \frac{1}{2\pi} \int \frac{d^3 P_X}{(2\pi)^3 2 P_X^0} (2\pi)^4 \delta^4(q+P-P_X) \langle P, S | J_\mu(0) | P_X \rangle \langle P_X | J_\nu(0) | P, S \rangle \\ &= \sum_a e_a^2 \int \frac{d^3 P_X}{(2\pi)^3 2 P_X^0} (2\pi)^4 \delta^4(q+P-P_X) \int \frac{d^4 \kappa}{(2\pi)^4} \, \delta(\kappa^2) \int d^4 k \, \delta^4(k+q-\kappa) \\ &\times [\overline{u}(\kappa) \gamma_\mu \phi(k;P,S)]^* [\overline{u}(\kappa) \gamma_\nu \phi(k;P,S)] \\ &= \sum_a e_a^2 \int d^4 k \, \delta \left((k+q)^2 \right) \, \mathrm{Tr} \left[\Phi(k;P,S) \gamma_\mu(k+q) \gamma_\nu \right] \end{split}$$

with $\phi_i(k; P, S) = \langle P_X | \psi_i(0) | P, S \rangle$ and

$$\begin{split} \Phi_{ij}(k;P,S) &= \frac{1}{(2\pi)^4} \int \frac{d^3 P_X}{(2\pi)^3 2 P_X^0} (2\pi)^4 \delta^4 (P-k-P_X) \langle P,S | \overline{\psi}_j(0) | P_X \rangle \langle P_X | \psi_i(0) | P,S \rangle \\ &= \frac{1}{(2\pi)^4} \int d^4 \xi \, e^{ik \cdot \xi} \langle P,S | \overline{\psi}_j(0) \psi_i(\xi) | P,S \rangle, \end{split}$$

colour gauge invariance

$$\Phi_{ij}(P,k,S|n) = \frac{1}{(2\pi)^4} \int d^4\xi \, e^{ik\cdot\xi} \langle PS|\overline{\psi}_j(0) \, \mathcal{U}(0,\xi|n) \psi_i(\xi)|PS \rangle$$

Wilson line:

$$\mathcal{U}(0,\xi|n) = \mathcal{P}\exp\left[-ig\int_0^{\xi} d\tau \, n^{\mu} A_{\mu}(\tau n)\right]$$

= $[0,0,\mathbf{0}_T;\infty^-,0,\mathbf{0}_T] \times [\infty^-,0,\mathbf{0}_T;\infty^-,\xi^+,\boldsymbol{\xi}_T] \times [\infty^-,\xi^+,\boldsymbol{\xi}_T;\xi^-,\xi^+,\boldsymbol{\xi}_T]$

the choice of the contour depends on the process under consideration

hermiticity and parity:

$$\begin{array}{lll} \Phi^{\dagger}(P,p,S|n) &=& \gamma_0 \Phi(P,p,S|n)\gamma_0 \\ \Phi(P,p,S|n) &=& \gamma_0 \Phi(\bar{P},\bar{p},-\bar{S}|\bar{n})\gamma_0, \qquad \bar{P}^{\mu}=(P^0,-\vec{P}) \end{array}$$

- time-reversal does not give an additional constraint
- due to the Wilson line Lorentz invariance is violated

Goeke et al., P.L. B 618 (2005) 90 og a

$$\begin{split} \Phi(P,k,S|n) &= MA_1 + PA_2 + PA_3 + \frac{i}{2M} [P, P] A_4 + i(k \cdot S)\gamma_5 A_5 + M S\gamma_5 A_6 \\ &+ \frac{k \cdot S}{M} P\gamma_5 A_7 + \frac{k \cdot S}{M} PY_5 A_8 + \frac{[P, S]}{2} \gamma_5 A_9 + \frac{[V, S]}{2} \gamma_5 A_{10} \\ &+ \frac{k \cdot S}{2M^2} [P, Y]\gamma_5 A_{11} + \frac{1}{M} \varepsilon^{\mu\nu\rho\sigma} \gamma_{\mu} P_{\nu} k_{\rho} S_{\sigma} A_{12} \\ &+ \frac{M^2}{P \cdot n_-} pB_1 + \frac{iM}{2P \cdot n_-} [P, p] B_2 + \frac{iM}{2P \cdot n_-} [V, p] B_3 \\ &+ \frac{1}{P \cdot n_-} \varepsilon^{\mu\nu\rho\sigma} \gamma_{\mu} \gamma_5 P_{\nu} k_{\rho} n_{-\sigma} B_4 \\ &+ \frac{1}{P \cdot n_-} \varepsilon^{\mu\nu\rho\sigma} \gamma_{\mu} P_{\nu} n_{-\rho} S_{\sigma} B_5 + \frac{iM^2}{P \cdot n_-} (n_- \cdot S)\gamma_5 B_6 \\ &+ \frac{M}{P \cdot n_-} \varepsilon^{\mu\nu\rho\sigma} \gamma_{\mu} P_{\nu} n_{-\rho} S_{\sigma} B_7 + \frac{M}{P \cdot n_-} \varepsilon^{\mu\nu\rho\sigma} \gamma_{\mu} k_{\nu} n_{-\rho} S_{\sigma} B_8 \\ &+ \frac{(k \cdot S)}{M(P \cdot n_-)} \varepsilon^{\mu\nu\rho\sigma} \gamma_{\mu} P_{\nu} k_{\rho} n_{-\sigma} B_9 + \frac{M(n_- \cdot S)}{(P \cdot n_-)^2} \varepsilon^{\mu\nu\rho\sigma} \gamma_{\mu} P_{\nu} k_{\rho} n_{-\sigma} B_{10} \\ &+ \frac{M}{P \cdot n_-} (n_- \cdot S) P\gamma_5 B_{11} + \frac{M}{P \cdot n_-} (n_- \cdot S) P\gamma_5 B_{12} \\ &+ \frac{M}{P \cdot n_-} (k \cdot S) p\gamma_5 B_{13} + \frac{M^3}{(P \cdot n_-)^2} (n_- \cdot S) p\gamma_5 B_{14} \\ &+ \frac{M^2}{2P \cdot n_-} [P, P\gamma_5 B_{15} + \frac{(k \cdot S)}{2P \cdot n_-} [P, p] \gamma_5 B_{16} + \frac{(k \cdot S)}{2P \cdot n_-} [V, p] \gamma_5 B_{17} \\ &+ \frac{(n_- \cdot S)}{2P \cdot n_-} [P, P\gamma_5 B_{18} + \frac{M^2(n_- \cdot S)}{2(P \cdot n_-)^2} [P, p] \gamma_5 B_{19} + \frac{M^2(n_- \cdot S)}{2(P \cdot n_-)^2} [V, p] \gamma_5 B_{20} \end{split}$$

$$\Phi_{ij}(P,k,S|n) = \frac{1}{(2\pi)^4} \int d^4\xi \, e^{ik\cdot\xi} \langle PS|\overline{\psi}_j(0) \, \mathcal{U}(0,\xi|n) \psi_i(\xi)|PS \rangle$$

• *k*_T-dependent correlation function:

$$\begin{split} \Phi_{ij}(x,k_{T}) &= \int dk^{-} \Phi_{ij}(P,k,S|n) \\ &= \left. \frac{1}{(2\pi)^{3}} \int d\xi^{-} d^{2} \xi_{T} \, e^{i(k^{+}\xi^{-}-\mathbf{k}_{T}\cdot\xi_{T})} \left\langle P,S \,|\, \overline{\psi}_{j}(0) \, \mathcal{U}(0,\xi) \,\psi_{i}(\xi) \,|\, P,S \right\rangle \Big|_{\xi^{+}=0} \end{split}$$

$$\mathcal{U}(0,\xi) = \mathcal{U}(0,\xi|n)|_{\xi^+=0}$$

• integrating over k_T :

$$\begin{aligned} \Phi_{ij}(x) &= \int d^2 \mathbf{k}_T \, \Phi_{ij}(x, k_T) \\ &= \left. \frac{1}{2\pi} \int d\xi^- \, e^{ik^+\xi^-} \, \langle P, S \, | \, \overline{\psi}_j(0) \, \mathcal{U}(0, \xi) \, \psi_i(\xi) \, | \, P, S \rangle \right|_{\xi^+ = \boldsymbol{\xi}_T = 0} \end{aligned}$$

• fully integrated:

$$\Phi_{ij} = \int d^4 k \Phi_{ij}(P,k,S|n) = \langle P,S | \overline{\psi}_j(0) \psi_i(0) | P,S \rangle$$

• orthonormal basis set of Γ matrices: $\{1, i\gamma_5, \gamma^{\mu}, \gamma^{\mu}\gamma_5, i\sigma^{\mu\nu}\gamma_5\}$

• inner product
$$(\Gamma_1, \Gamma_2) = \operatorname{Tr} [\Gamma_1^{-1} \Gamma_2]/4$$

 $\gamma_5^{-1} = \gamma_5, \ (\gamma^{\mu})^{-1} = \gamma_{\mu}, \text{ and } \sigma^{\mu\nu} = \frac{1}{2} [\gamma^{\mu}, \gamma^{\nu}] \text{ with } (\sigma^{\mu\nu})^{-1} = \sigma_{\mu\nu}$

$$\Psi = \frac{1}{4} \left\{ \mathbf{1} \operatorname{Tr} \left[\Psi \right] - i \gamma_5 \operatorname{Tr} \left[i \gamma_5 \Psi \right] + \gamma_\mu \operatorname{Tr} \left[\gamma^\mu \Psi \right] + \gamma_5 \gamma_\mu \operatorname{Tr} \left[\gamma^\mu \gamma_5 \Psi \right] + i \gamma_5 \sigma_{\nu\mu} \operatorname{Tr} \left[i \sigma^{\mu\nu} \gamma_5 \Psi \right] \right]$$

$$= \frac{1}{2} \left\{ \mathbf{1} \Psi^{[1]} - i \gamma_5 \Psi^{[i \gamma_5]} + \gamma_\mu \Psi^{[\gamma^\mu]} + \gamma_5 \gamma_\mu \Psi^{[\gamma^\mu \gamma_5]} - i \gamma_5 \sigma_{\mu\nu} \Psi^{[i \sigma^{\mu\nu} \gamma_5]} \right\}$$

$$\Psi^{[\Gamma]} \equiv \frac{1}{2} \mathrm{Tr} \left[\Psi \Gamma \right]$$

• for example: $\Phi = \langle P, S | \overline{\psi}(0) \psi(0) | P, S \rangle$

scalar
$$\Phi^{[1]} = g_S M$$

pseudoscalar $\Phi^{[i\gamma_5]} = 0$
vector $\Phi^{[\gamma^{\mu}]} = g_V P^{\mu}$
axial $\Phi^{[\gamma^{\mu}\gamma_5]} = g_A M S^{\mu}$
tensor $\Phi^{[i\sigma^{\mu\nu}\gamma_5]} = g_T (S^{\mu}P^{\nu} - S^{\nu}P^{\mu})$

$$\Phi(x) = \frac{1}{2} \{ f_1(x) \phi_+ + \lambda g_1(x) \gamma_5 \phi_+ + h_1(x) \gamma_5 \frac{1}{2} [\mathcal{G}_{\perp}, \phi_+] \} \\ + \frac{M}{2P^+} \{ e(x) + g_T(x) \gamma_5 \mathcal{G}_{\perp} + \lambda h_L(x) \gamma_5 \frac{1}{2} [\phi_+, \phi_-] \} \\ + \frac{M}{2P^+} \{ -\lambda e_L(x) i\gamma_5 - f_T(x) \varepsilon_T^{\rho\sigma} \gamma_\rho S_{\perp\sigma} + h(x) i\frac{1}{2} [\phi_+, \phi_-] \} \\ + \frac{M^2}{2(P^+)^2} \{ f_3(x) \phi_- + \lambda g_3(x) \gamma_5 \phi_- + h_3(x) \gamma_5 \frac{1}{2} [\mathcal{G}_{\perp}, \phi_-] \}$$

twist-2

$$\Phi^{[\gamma^+]}(x) = f_1(x)$$

$$\Phi^{[\gamma^+\gamma_5]}(x) = \lambda g_1(x)$$

$$\Phi^{[i\sigma^{i+}\gamma_5]}(x) = S^i_{\perp} h_1(x)$$

$$n_{+}^{\mu} = [0, 1, \mathbf{0}_{T}]$$

 $n_{-}^{\mu} = [1, 0, \mathbf{0}_{T}]$

Φ

$$\Phi^{[1]}(x) = \frac{M}{P^+} e(x)$$

$$\Phi^{[i\gamma_5]}(x) = \frac{M}{P^+} e_L(x)$$

$$\Phi^{[\gamma^i]}(x) = -\frac{M \varepsilon_T^{i\rho} S_{\perp\rho}}{P^+} f_T(x)$$

$$\Phi^{[\gamma^i\gamma_5]}(x) = \frac{M S_{\perp}^i}{P^+} g_T(x)$$

$$i\sigma^{+-\gamma_5]}(x) = \frac{M}{P^+} \lambda h_L(x)$$

$$\Phi^{[i\sigma^{ij}\gamma_5]}(x) = \frac{M}{P^+} \varepsilon_T^{ij} \lambda h(x)$$

twist-3

twist-4

$$\Phi^{[\gamma^-]}(x) = f_3(x)$$

$$\Phi^{[\gamma^-\gamma_5]}(x) = \lambda g_3(x)$$

$$\Phi^{[i\sigma^{i-}\gamma_5]}(x) = S^i_{\perp} h_3(x)$$

$$\begin{split} \varepsilon_T^{\alpha\beta} &: \varepsilon_T^{11} = \varepsilon_T^{22} = -1 \\ \varepsilon_T^{12} = -\varepsilon_T^{21} = 1 \end{split}$$

parton distributions

with $\lambda=1, S^i_\perp=(1,0)$

$$\begin{bmatrix} f_{1}(x) \\ g_{1}(x) \\ h_{1}(x) \end{bmatrix} = \begin{bmatrix} \Phi^{[\gamma^{+}]}(x) \\ \Phi^{[\gamma^{+}\gamma_{5}]}(x) \\ \Phi^{[i\sigma^{i+}\gamma_{5}]}(x) \end{bmatrix} = \frac{1}{2} \int \frac{d\xi^{-}}{2\pi} e^{ixP^{+}\xi^{-}} \langle PS|\overline{\psi}(0) \begin{bmatrix} \gamma^{+} \\ \gamma^{+}\gamma_{5} \\ \gamma^{+}\gamma^{1}\gamma_{5} \end{bmatrix} \psi(0,\xi^{-},\mathbf{0}_{T})|PS\rangle$$

• decompose into "good" and "bad" components: $\psi = \psi_{(+)} + \psi_{(-)}$, $\psi_{(\pm)} = \frac{1}{2} \gamma^{\mp} \gamma^{\pm} \psi$

$$\begin{bmatrix} f_{1}(x) \\ g_{1}(x) \\ h_{1}(x) \end{bmatrix} = \frac{1}{\sqrt{2}} \int \frac{d\xi^{-}}{2\pi} e^{ixP^{+}\xi^{-}} \langle PS | \psi^{\dagger}_{(+)}(0) \begin{bmatrix} 1 \\ \gamma_{5} \\ \gamma^{1}\gamma_{5} \end{bmatrix} \psi_{(+)}(0,\xi^{-},\mathbf{0}_{T}) | PS \rangle$$

• define projectors $\mathcal{P}_{\pm} = \frac{1}{2} (1 \pm \gamma^5)$ (for helicity) and $\mathcal{P}_{\uparrow\downarrow} = \frac{1}{2} (1 \pm \gamma^1 \gamma^5)$ (for transversity)

$$\begin{bmatrix} f_{1}(x) \\ g_{1}(x) \\ h_{1}(x) \end{bmatrix} = \frac{1}{\sqrt{2}} \sum_{n} \delta((1-x)P^{+} - P_{n}^{+}) \begin{bmatrix} |\langle PS|\psi_{(+)}(0)|n\rangle|^{2} \\ |\langle PS|\mathcal{P}_{+}\psi_{(+)}(0)|n\rangle|^{2} - |\langle PS|\mathcal{P}_{-}\psi_{(+)}(0)|n\rangle|^{2} \\ |\langle PS|\mathcal{P}_{\uparrow}\psi_{(+)}(0)|n\rangle|^{2} - |\langle PS|\mathcal{P}_{\downarrow}\psi_{(+)}(0)|n\rangle|^{2} \end{bmatrix}$$

◆□ > ◆□ > ◆三 > ◆三 > ● ● ●

parton distributions and Fock-state decomposition

$$\psi_{(+)}^{q}(z^{-}, \mathbf{z}_{\perp}) = \int \frac{dk^{+}dk_{\perp}}{2k^{+}(2\pi)^{3}} \Theta(k^{+}) \sum_{\mu} \left\{ b_{q}(\mathbf{w})u_{+}(k, \mu) e^{-ik^{+}z^{-} + ik_{\perp} \cdot \mathbf{z}_{\perp}} + d_{q}^{\dagger}(\mathbf{w})v_{+}(k, \mu) e^{+ik^{+}z^{-} - ik_{\perp} \cdot \mathbf{z}_{\perp}} \right\}$$

$$\int \frac{dy^{-}}{2\pi} e^{ixP^{+}y^{-}} \overline{\psi}(-\frac{1}{2}y) \gamma^{+} \psi(\frac{1}{2}y) = 2\sqrt{2} \int \frac{dk'^{+}dk'_{\perp}}{2k'^{+}(2\pi)^{3}} \Theta(k'^{+}) \int \frac{dk^{+}dk_{\perp}}{2k'^{+}(2\pi)^{3}} \Theta(k^{+}) \\ \times \sum_{\mu,\mu'} \left\{ \delta(2xP^{+} - k'^{+} - k^{+}) b^{\dagger}_{q}(w')b_{q}(w) u^{\dagger}_{+}(k',\mu')u_{+}(k,\mu) \right. \\ \left. + \delta(2xP^{+} + k'^{+} + k^{+}) d_{q}(w')d^{\dagger}_{q}(w) v^{\dagger}_{+}(k',\mu')v_{+}(k,\mu) \right. \\ \left. + \delta(2xP^{+} + k'^{+} - k^{+}) d_{q}(w')b_{q}(w) v^{\dagger}_{+}(k',\mu')u_{+}(k,\mu) \right. \\ \left. + \delta(2xP^{+} - k'^{+} - k^{+}) b^{\dagger}_{q}(w')d^{\dagger}_{q}(w) u^{\dagger}_{+}(k',\mu')v_{+}(k,\mu) \right.$$

$$f_1^q(\mathbf{x}) = \frac{1}{2(2\pi)^3} \int \frac{dk^+ d\mathbf{k}_\perp}{2k^+(2\pi)^3} \Theta(k^+) \sum_{\mu} \left\{ \delta\left(\mathbf{x} - \frac{k^+}{P^+}\right) \langle P | \mathbf{b}_q^{\dagger}(\mathbf{w}) \mathbf{b}_q(\mathbf{w}) | P \rangle + \delta\left(\mathbf{x} + \frac{k^+}{P^+}\right) \langle P | \mathbf{d}_q(\mathbf{w}) \mathbf{d}_q^{\dagger}(\mathbf{w}) | P \rangle \right\}$$

parton distributions as probabilities

$$\begin{bmatrix} f_{1}(x) \\ g_{1}(x) \\ h_{1}(x) \end{bmatrix} = \frac{1}{\sqrt{2}} \sum_{n} \delta((1-x)P^{+} - P_{n}^{+}) \begin{bmatrix} |\langle PS|\psi_{(+)}(0)|n\rangle|^{2} \\ |\langle PS|\mathcal{P}_{+}\psi_{(+)}(0)|n\rangle|^{2} - |\langle PS|\mathcal{P}_{-}\psi_{(+)}(0)|n\rangle|^{2} \\ |\langle PS|\mathcal{P}_{\uparrow}\psi_{(+)}(0)|n\rangle|^{2} - |\langle PS|\mathcal{P}_{\downarrow}\psi_{(+)}(0)|n\rangle|^{2} \end{bmatrix}$$

 $|g_1^a(x)| \le f_1^a(x), \qquad |h_1^a(x)| \le f_1^a(x)$

• Soffer inequality:
$$|h_1^a(x)| \leq \frac{1}{2}[f_1^a(x) + g_1^a(x)]$$

イロン イヨン イヨン イヨン 三日

including antiquarks

$$ar{\Phi}_{ij}(P,k,S|n) = rac{1}{(2\pi)^4}\int d^4\xi \, e^{ik\cdot\xi} \langle PS|\psi_j(0)\overline{\psi}_i(\xi)|PS
angle \ \langle PS|\overline{\psi}_j(0)\psi_i(\xi)|PS
angle = -\langle PS|\psi_j(0)\overline{\psi}_i(\xi)|PS
angle$$

$$\Rightarrow \begin{array}{rcl} \bar{f}_1(x) &=& -f_1(-x) \\ \bar{g}_1(x) &=& g_1(-x) \\ \bar{h}_1(x) &=& h_1(-x) \end{array}$$

N.B.
$$W^{(S)}_{\mu\nu} = \sum_{a} e^2_a (n_\mu P^\nu + n_\nu P^\mu - g_{\mu\nu}) \left[f^a_1(x) + \bar{f}^a_1(x) \right]$$

$$\implies F_2 = 2x F_1 = \sum_a e_a^2 x \left[f_1^a(x) + \overline{f}_1^a(x) \right] \qquad \text{Callan-Gross}$$

similarly: $W^{(A)}_{\mu\nu} = \lambda \varepsilon_{\mu\nu\rho\sigma} n^{\rho} p^{\sigma} \frac{1}{2} \sum_{a} e^2_a \left[g^a_1(x) + \bar{g}^a_1(x) \right]$

the ZEUS NLO QCD fit at $Q^2 = 10 \text{ GeV}^2$ Chekanov *et al.*, PR D 67 (2003) 012007 the H1 starting scale at $Q^2 = 4 \text{ GeV}^2$ Adloff *et al.*, EPJ C 30 (2003) 1

▲□▶ ▲□▶ ▲目▶ ▲目▶ - 目 - のへで

the polarized helicity distributions $x \Delta u_v$ evolved up to $Q^2 = 10\ 000\ \text{GeV}^2$ Blümlein, Böttcher, NP B 636 (2002) 225

the polarized helicity dstributions $x\Delta d_v$ evolved up to $Q^2 = 10\ 000\ \text{GeV}^2$ Blümlein, Böttcher, NP B 636=(2002) 225 $\sim Q_{\text{CV}}$

B. Pasquini, M. Pincetti, S. B., hep-ph/0612094

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

first moments of parton distributions

$$\int_{-1}^{+1} dx f_1(x) = \int_0^1 dx \left[f_1(x) - \overline{f}_1(x) \right] = g_V \quad \text{vector charge} = \text{valence number}$$

non - singlet

$$\int_{-1}^{+1} dx \, g_1(x) = \int_0^1 dx \, [g_1(x) + \overline{g}_1(x)] = g_A \qquad \text{axial charge = net number}$$

singlet of L quarks in L proton

$$\int_{-1}^{+1} dx h_1(x) = \int_0^1 dx \left[h_1(x) - \overline{h}_1(x) \right] = g_T \quad \text{tensor charge = net number}$$

non - singlet of T quarks in T proton

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへぐ

no access to transversity in inclusive DIS

possible access to transversity in Drell-Yan processes

the Drell-Yan process with Born diagram

for unpolarized hadrons

$$\frac{d\sigma_{UU}(AB \rightarrow \mu^+\mu^-X)}{dx_A \, dx_B \, dy} = \frac{4\pi\alpha^2}{3Q^2} \left(\frac{1}{2} - y + y^2\right) f_1(x_A) \overline{f}_1(x_B)$$

for longitudinally polarized hadrons

$$\frac{d\sigma_{LL}(\vec{A}\vec{B} \rightarrow \mu^+\mu^-X)}{dx_A \, dx_B \, dy} = \frac{4\pi\alpha^2}{3Q^2} \left(\frac{1}{2} - y + y^2\right) \lambda_A \, \lambda_B \, g_1(x_A) \overline{g}_1(x_B)$$

for transversely polarized hadrons

$$\frac{d\sigma_{TT}(\vec{A}\vec{B} \rightarrow \mu^+\mu^-X)}{dx_A dx_B dy} = \frac{4\pi\alpha^2}{3Q^2} y (1-y) |\boldsymbol{S}_{A\perp}| |\boldsymbol{S}_{B\perp}| h_1(x_A) \overline{h}_1(x_B)$$

transversity and the Drell-Yan dilepton production

double transverse-spin asymmetry

$$A_{TT}^{pp} = \frac{d\sigma^{\uparrow\uparrow\uparrow} - d\sigma^{\uparrow\downarrow\downarrow}}{d\sigma^{\uparrow\uparrow\uparrow} + d\sigma^{\uparrow\downarrow\downarrow}}$$

=
$$\frac{\sin^2\theta}{1 + \cos^2\theta} \cos(2\phi) \frac{\sum_{a} e_a^2 \left[h_1^a(x_1, Q^2) \bar{h}_1^a(x_2, Q^2) + (1 \leftrightarrow 2)\right]}{\sum_{a} e_a^2 \left[f_1^a(x_1, Q^2) \bar{f}_1^a(x_2, Q^2) + (1 \leftrightarrow 2)\right]}$$

Trento convention, Bacchetta et al., hep-ph/0410050

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

the SIDIS hadron tensor

$$\begin{split} \mathcal{W}_{\mu\nu}(q; PS; P_h S_h) & \xrightarrow{P} \\ &= \frac{1}{(2\pi)^4} \int \frac{d^3 P_X}{(2\pi)^3 2 P_X^0} (2\pi)^4 \delta^4 (q + P - P_X - P_h) \langle PS| J_\mu(0) | P_X; P_h S_h \rangle \langle P_X; P_h S_h | J_\mu(0) | PS \rangle \\ &= \sum_a e_a^2 \int \frac{d^3 P_X}{(2\pi)^3 2 P_X^0} (2\pi)^4 \delta^4 (P - P - P_X) \int \frac{d^4 p}{(2\pi)^4} \, \delta(p + q - k) \int \frac{d^4 k}{(2\pi)^4} \, \delta^4(k - P_h - P_{X'}) \\ &\times [\overline{\chi}(k; P_h, S_h) \gamma_\mu \phi(p; P, S)]^* [\overline{\chi}(k; P_h, S_h) \gamma_\nu \phi(p; P, S)] \\ &= \int d^4 p \int d^4 k \, \delta^4(p + q - k) \mathrm{Tr} \left[\Phi(p; P, S) \gamma_\mu \Delta(k; P_h, S_h) \gamma_\nu \right] + \begin{cases} q \leftrightarrow -q \\ \mu \leftrightarrow \nu \end{cases} \end{split}$$

with $\chi_i(k; P_h, S_h) = \langle 0 | \psi_i(0) | P_X; P_h S_h \rangle$, $\phi_i(p; P, S) = \langle P_X | \psi_i(0) | PS \rangle$ and

$$\begin{split} \Phi_{ij}(k;P,\mathbf{S}) &= \frac{1}{(2\pi)^4} \int \frac{d^3 P_X}{(2\pi)^3 2 P_X^0} (2\pi)^4 \delta^4 (P-p-P_X) \langle P, S | \overline{\psi}_j(0) | P_X \rangle \langle P_X | \psi_i(0) | P, S \rangle \\ &= \frac{1}{(2\pi)^4} \int d^4 \xi \, e^{ik \cdot \xi} \langle P, S | \overline{\psi}_j(0) \psi_i(\xi) | P, S \rangle, \end{split}$$

$$\begin{split} \Delta_{ij}(k;P_h,S_h) &= \frac{1}{(2\pi)^4} \int \frac{d^3 P_X}{(2\pi)^3 2 P_X^0} (2\pi)^4 \delta^4 (P_h + P_X - k) \langle 0|\psi_i(0)|P_X;P_hS_h\rangle \langle P_X;P_hS_h|\overline{\psi}_j(0)|0\rangle \\ &= \sum_X \frac{1}{(2\pi)^4} \int d^4 \xi \, e^{ik\cdot\xi} \langle 0|\psi_i(\xi)|X;P_hS_h\rangle \langle X;P_hS_h|\overline{\psi}_j(0)|0\rangle \\ &= \sum_X \frac{1}{(2\pi)^4} \int d^4 \xi \, e^{ik\cdot\xi} \langle 0|\psi_i(\xi)|X;P_hS_h\rangle \langle X;P_hS_h|\overline{\psi}_j(0)|0\rangle \\ &= \sum_X \frac{1}{(2\pi)^4} \int d^4 \xi \, e^{ik\cdot\xi} \langle 0|\psi_i(\xi)|X;P_hS_h\rangle \langle X;P_hS_h|\overline{\psi}_j(0)|0\rangle \\ &= \sum_X \frac{1}{(2\pi)^4} \int d^4 \xi \, e^{ik\cdot\xi} \langle 0|\psi_i(\xi)|X;P_hS_h\rangle \langle X;P_hS_h|\overline{\psi}_j(0)|0\rangle \\ &= \sum_X \frac{1}{(2\pi)^4} \int d^4 \xi \, e^{ik\cdot\xi} \langle 0|\psi_i(\xi)|X;P_hS_h\rangle \langle X;P_hS_h|\overline{\psi}_j(0)|0\rangle \\ &= \sum_X \frac{1}{(2\pi)^4} \int d^4 \xi \, e^{ik\cdot\xi} \langle 0|\psi_i(\xi)|X;P_hS_h\rangle \langle X;P_hS_h|\overline{\psi}_j(0)|0\rangle \\ &= \sum_X \frac{1}{(2\pi)^4} \int d^4 \xi \, e^{ik\cdot\xi} \langle 0|\psi_i(\xi)|X;P_hS_h\rangle \langle X;P_hS_h|\overline{\psi}_j(0)|0\rangle \\ &= \sum_X \frac{1}{(2\pi)^4} \int d^4 \xi \, e^{ik\cdot\xi} \langle 0|\psi_i(\xi)|X;P_hS_h\rangle \langle X;P_hS_h|\overline{\psi}_j(0)|0\rangle \\ &= \sum_X \frac{1}{(2\pi)^4} \int d^4 \xi \, e^{ik\cdot\xi} \langle 0|\psi_i(\xi)|X;P_hS_h\rangle \langle X;P_hS_h|\overline{\psi}_j(0)|0\rangle \\ &= \sum_X \frac{1}{(2\pi)^4} \int d^4 \xi \, e^{ik\cdot\xi} \langle 0|\psi_i(\xi)|X;P_hS_h\rangle \langle X;P_hS_h|\overline{\psi}_j(0)|0\rangle \\ &= \sum_X \frac{1}{(2\pi)^4} \int d^4 \xi \, e^{ik\cdot\xi} \langle 0|\psi_i(\xi)|X;P_hS_h\rangle \langle X;P_hS_h|\overline{\psi}_j(0)|0\rangle \\ &= \sum_X \frac{1}{(2\pi)^4} \int d^4 \xi \, e^{ik\cdot\xi} \langle 0|\psi_i(\xi)|X;P_hS_h\rangle \langle X;P_hS_h|\overline{\psi}_j(0)|0\rangle \\ &= \sum_X \frac{1}{(2\pi)^4} \int d^4 \xi \, e^{ik\cdot\xi} \langle 0|\psi_i(\xi)|X;P_hS_h\rangle \langle X;P_hS_h|\overline{\psi}_j(0)|0\rangle \\ &= \sum_X \frac{1}{(2\pi)^4} \int d^4 \xi \, e^{ik\cdot\xi} \langle 0|\psi_i(\xi)|X;P_hS_h\rangle \langle X;P_hS_h|\overline{\psi}_j(0)|0\rangle \\ &= \sum_X \frac{1}{(2\pi)^4} \int d^4 \xi \, e^{ik\cdot\xi} \langle 0|\psi_i(\xi)|X;P_hS_h\rangle \langle X;P_hS_h|\overline{\psi}_j(0)|0\rangle \\ &= \sum_X \frac{1}{(2\pi)^4} \int d^4 \xi \, e^{ik\cdot\xi} \langle 0|\psi_i(\xi)|X;P_hS_h\rangle \langle X;P_hS_h|\overline{\psi}_j(0)|0\rangle \\ &= \sum_X \frac{1}{(2\pi)^4} \int d^4 \xi \, e^{ik\cdot\xi} \langle 0|\psi_i(\xi)|X;P_hS_h|\psi_j(0)|0\rangle \\ &= \sum_X \frac{1}{(2\pi)^4} \int d^4 \xi \, e^{ik\cdot\xi} \langle 0|\psi_i(\xi)|X;P_hS_h|\psi_j(0)|0\rangle \\ &= \sum_X \frac{1}{(2\pi)^4} \int d^4 \xi \, e^{ik\cdot\xi} \langle 0|\psi_i(\xi)|X;P_hS_h|\psi_j(0)|0\rangle \\ &= \sum_X \frac{1}{(2\pi)^4} \int d^4 \xi \, e^{ik\cdot\xi} \langle 0|\psi_i(\xi)|X|X|\psi_j(0)|0\rangle \\ &= \sum_X \frac{1}{(2\pi)^4} \int d^4 \xi \, e^{ik\cdot\xi} \langle 0|\psi_i(\xi)|X|X|\psi_j(0)|0\rangle \\ &= \sum_X \frac{1}{(2\pi)^4} \int d^4 \xi \, e^{ik\cdot\xi} \langle 0|\psi_i(\xi)|X|X|\psi_j(0)|0\rangle \\ &= \sum_X \frac{1}{(2\pi)^4} \int d^4 \xi \, e^{ik\cdot\xi} \langle 0|\psi_i(\xi)|X|X|\psi_j(0)|0\rangle \\ &= \sum_X \frac{1}{(2\pi)^4} \int d^4 \xi \, e^{ik\cdot\xi} \langle 0|\psi_j(0$$
including gluons

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

k_T -dependent correlation functions

$$\begin{split} \Phi(x,k_{T}) &= \int dk^{-} \Phi(k;P,S) \left|_{k^{+}=xP^{+},k_{T}} \right. \\ &= \frac{1}{2} \left\{ f_{1} \not h_{+} - f_{1T}^{\perp} \frac{\epsilon_{T}^{\rho\sigma} k_{T\rho} S_{T\sigma}}{M} \not h_{+} + g_{1s} \gamma_{5} \not h_{+} \right. \\ &+ h_{1T} \frac{\left[\not g_{T}, \not h_{+} \right] \gamma_{5}}{2} + h_{1s}^{\perp} \frac{\left[\not k_{T}, \not h_{+} \right] \gamma_{5}}{2M} + h_{1}^{\perp} i \frac{\left[\not k_{T}, \not h_{+} \right]}{2M} \right\} \\ &+ \frac{M}{2P^{+}} \left\{ e - e_{s} i \gamma_{5} - e_{T}^{\perp} \frac{\epsilon_{T}^{\rho\sigma} k_{T\rho} S_{T\sigma}}{M} \right. \\ &+ f^{\perp} \frac{\not k_{T}}{M} - f_{T}^{\prime} \epsilon_{T}^{\rho\sigma} \gamma_{\rho} S_{T\sigma} - f_{s}^{\perp} \frac{\epsilon_{T}^{\rho\sigma} \gamma_{\rho} k_{T\sigma}}{M} \\ &+ g_{T}^{\prime} \gamma_{5} \not S_{T} + g_{s}^{\perp} \gamma_{5} \frac{\not k_{T}}{M} - g^{\perp} \gamma_{5} \frac{\epsilon_{T}^{\rho\sigma} \gamma_{\rho} k_{T\sigma}}{M} \\ &+ h_{s} \frac{\left[\not h_{+}, \not h_{-} \right] \gamma_{5}}{2} + h_{T}^{\perp} \frac{\left[\not g_{T}, \not k_{T} \right] \gamma_{5}}{2M} + h i \frac{\left[\not h_{+}, \not h_{-} \right]}{2} \right\} \end{split}$$

N.B. subscript s, e.g.: $g_{1s}(x, k_T^2) = S_L g_{1L}(x, k_T^2) - \frac{k_T \cdot S_T}{M} g_{1T}(x, k_T^2)$ N.B. e.g.: $f_1(x) = \int d^2 k_T f_1(x, k_T^2)$ correlation between target transverse polarization and quark transverse momentum

Sivers function: f_{1T}^{\perp}

N.B.
$$f_{1T}^{\perp}(x, k_T^2)|_{SIDIS} = -f_{1T}^{\perp}(x, k_T^2)|_{DY}$$

correlation between quark transverse spin and momentum

Boer-Mulders function: h_1^{\perp}

quark fragmentation function

$$\begin{split} \Delta_{kl}(k;P_h,S_h) &= \sum_{\chi} \frac{1}{(2\pi)^4} \int d^4 \xi \, e^{ik \cdot \xi} \langle 0 | \psi_k(\xi) | X; P_h S_h \rangle \langle X; P_h S_h | \overline{\psi}_l(0) | 0 \rangle \\ &= \frac{1}{2} \left\{ S \, 1 + \mathcal{P} \, i \gamma_5 + \mathcal{V}_\mu \, \gamma^\mu + \mathcal{A}_\mu \, \gamma^\mu \gamma_5 + \mathcal{T}_{\mu\nu} \, i \frac{1}{2} \sigma^{\mu\nu} \gamma_5 \right\} \\ \Delta_{ij}(z,k_T) &= \frac{1}{2z} \int dk^+ \, \Delta_{ij}(k;P_h,S_h) \left|_{k^- = P_h^-/z,k_T} \right. \\ &= \left. \frac{1}{2z} \sum_{\chi} \int \frac{d\xi^+ d^2 \xi_T}{(2\pi)^3} \, e^{ik \cdot \xi} \, \langle 0 | \, \psi_i(\xi) | h, X \rangle \langle h, X | \overline{\psi}_j(0) | 0 \rangle \right|_{\xi^-=0} \\ \Delta(z) &= z^2 \int d^2 \mathbf{k}_T \, \Delta(z,k_T) \end{split}$$

 z^2 because probability density w.r.t. $k_{\mathcal{T}}'=-zk_{\mathcal{T}}$

◆□ → ◆□ → ◆臣 → ◆臣 → ○ 臣 → のへで

$$\begin{split} \Delta(z) &= z^2 \int d^2 \mathbf{k}_T \, \Delta(z, k_T) = \frac{z}{2} \int dk^+ d\mathbf{k}_T \Delta(k; P_h, S_h) \\ &= \frac{1}{4} \left\{ D_1(z) \, \phi_- - \lambda_h \, G_1(z) \, \phi_- \gamma_5 + H_1(z) \frac{1}{2} \left[\, \mathcal{G}_{hT}, \, \phi_- \right] \gamma_5 \right\} \\ &+ \frac{M_h}{4P_h^-} \left\{ D_T(z) \, \varepsilon_T^{\rho\sigma} \, \gamma_\rho \, S_{hT\sigma} + E(z) - \lambda_h \, E_L(z) \, i\gamma_5 \right. \\ &- \left. - G_T(z) \, \, \mathcal{G}_{hT} \, \gamma_5 + \lambda_h \, H_L(z) \, \frac{1}{2} \left[\, \phi_-, \, \phi_+ \right] \gamma_5 + i H(z) \frac{1}{2} \left[\, \phi_-, \, \phi_+ \right] \right\} \end{split}$$

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへ⊙

quark fragmentation function

• one-hadron inclusive e⁺-e⁻ annihilation

$$rac{d\sigma(e^+e^-
ightarrow hX)}{d\Omega\,dz_h}\sim\sum_a e_a^2\,D_1^a(z_h)$$

• two-hadron inclusive e⁺-e⁻ annihilation

$$\frac{d\sigma(e^+e^- \rightarrow h_1h_2X)}{d\Omega \, dz_1 dz_2} \sim \sum_a e_a^2 D_1^a(z_1) D_1^{\overline{a}}(z_2)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

$$\begin{aligned} \frac{d\sigma}{dx \, dy \, d\psi \, dz \, d\phi_h \, dP_{h\perp}^2} &= \text{SIDIS} \\ \frac{\alpha^2}{xy \, Q^2} \frac{y^2}{2(1-\varepsilon)} \left(1 + \frac{\gamma^2}{2x}\right) \left\{ F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2 \varepsilon(1+\varepsilon)} \cos \phi_h F_{UU}^{\cos \phi_h} + \varepsilon \cos(2\phi_h) F_{UU}^{\cos 2\phi_h} + \lambda_e \sqrt{2 \varepsilon(1-\varepsilon)} \sin \phi_h F_{LU}^{\sin \phi_h} \\ + \varepsilon \cos(2\phi_h) F_{UU}^{\cos 2\phi_h} + \lambda_e \sqrt{2 \varepsilon(1-\varepsilon)} \sin \phi_h F_{UL}^{\sin 2\phi_h} \\ + S_{\parallel} \left[\sqrt{2 \varepsilon(1+\varepsilon)} \sin \phi_h F_{UL}^{\sin \phi_h} + \varepsilon \sin(2\phi_h) F_{UL}^{\sin 2\phi_h} \right] \\ + S_{\parallel} \lambda_e \left[\sqrt{1-\varepsilon^2} F_{LL} + \sqrt{2 \varepsilon(1-\varepsilon)} \cos \phi_h F_{LL}^{\cos \phi_h} \right] \\ + \left| \mathbf{S}_{\perp} \right| \left[\sin(\phi_h - \phi_S) \left(F_{UT,T}^{\sin(\phi_h - \phi_S)} + \varepsilon F_{UT,L}^{\sin(\phi_h - \phi_S)} \right) \\ + \varepsilon \sin(\phi_h + \phi_S) F_{UT}^{\sin(\phi_h + \phi_S)} + \varepsilon \sin(3\phi_h - \phi_S) F_{UT}^{\sin(3\phi_h - \phi_S)} \\ + \sqrt{2 \varepsilon(1+\varepsilon)} \sin \phi_S F_{UT}^{\sin \phi_S} + \sqrt{2 \varepsilon(1+\varepsilon)} \sin(2\phi_h - \phi_S) F_{UT}^{\sin(2\phi_h - \phi_S)} \\ + \sqrt{2 \varepsilon(1-\varepsilon)} \cos(2\phi_h - \phi_S) F_{LT}^{\cos(\phi_h - \phi_S)} + \sqrt{2 \varepsilon(1-\varepsilon)} \cos \phi_S F_{LT}^{\cos \phi_S} \\ + \sqrt{2 \varepsilon(1-\varepsilon)} \cos(2\phi_h - \phi_S) F_{LT}^{\cos(2\phi_h - \phi_S)} \right] \right\} \end{aligned}$$

N.B. $F \equiv F(x, Q^2, z, P_{h\perp}^2)$ Bacchetta *et al.*, hep-ph/0611265

(ロ) (回) (三) (三) (三) (○) (○)

introduce the unit vector $\hat{\mathbf{h}}=\mathbf{P}_{h\perp}/|\mathbf{P}_{h\perp}|$ and the notation

$$\begin{split} \mathcal{C}\left[w\,f\,D\right] &= x\,\sum_{a}e_{a}^{2}\int d^{2}\mathbf{p}_{T}\,d^{2}\mathbf{k}_{T}\,\delta^{(2)}\left(\mathbf{p}_{T}-\mathbf{k}_{T}-\mathbf{P}_{h\perp}/z\right)\,w(\mathbf{p}_{T},\mathbf{k}_{T})\,f^{a}(x,p_{T}^{2})\,D^{a}(z,k_{T}^{2}),\\ F_{UU},\tau &= \mathcal{C}\left[f_{1}D_{1}\right],\\ F_{UU},\iota &= 0,\\ F_{UU}^{\cos\phi h} &= \frac{2M}{Q}\,\mathcal{C}\left[-\frac{\hat{\mathbf{h}}\cdot\mathbf{k}_{T}}{M_{h}}\left(xh\,H_{1}^{\perp}+\frac{M_{h}}{M}\,f_{1}\frac{\tilde{D}^{\perp}}{z}\right)-\frac{\hat{\mathbf{h}}\cdot\mathbf{p}_{T}}{M}\left(xf^{\perp}D_{1}+\frac{M_{h}}{M}\,h_{1}^{\perp}\frac{\tilde{H}}{z}\right)\right]\\ &\approx \frac{2M}{Q}\,\mathcal{C}\left[-\frac{\hat{\mathbf{h}}\cdot\mathbf{p}_{T}}{M}\,f_{1}D_{1}\right],\quad\text{Cahn effect}\\ F_{UU}^{\cos2\phi_{h}} &= \mathcal{C}\left[-\frac{2\left(\hat{\mathbf{h}}\cdot\mathbf{k}_{T}\right)\left(\hat{\mathbf{h}}\cdot\mathbf{p}_{T}\right)-\mathbf{k}_{T}\cdot\mathbf{p}_{T}}{MM_{h}}\,h_{1}^{\perp}H_{1}^{\perp}\right],\quad\text{Boer-Mulders and Collins functions}\\ [\lambda_{e}]\ F_{UU}^{\sin\phi_{h}} &= \frac{2M}{Q}\,\mathcal{C}\left[-\frac{\hat{\mathbf{h}}\cdot\mathbf{k}_{T}}{M_{h}}\left(xe\,H_{1}^{\perp}+\frac{M_{h}}{M}\,f_{1}\frac{\tilde{G}^{\perp}}{z}\right)+\frac{\hat{\mathbf{h}}\cdot\mathbf{p}_{T}}{M}\left(xg^{\perp}D_{1}+\frac{M_{h}}{M}\,h_{1}^{\perp}\frac{\tilde{E}}{z}\right)\right],\\ [S_{\parallel}]\ F_{UL}^{\sin\phi_{h}} &= \frac{2M}{Q}\,\mathcal{C}\left[-\frac{\hat{\mathbf{h}}\cdot\mathbf{k}_{T}}{M_{h}}\left(xh_{L}H_{1}^{\perp}+\frac{M_{h}}{M}\,g_{1L}\frac{\tilde{G}^{\perp}}{z}\right)+\frac{\hat{\mathbf{h}}\cdot\mathbf{p}_{T}}{M}\left(xf_{L}^{\perp}D_{1}-\frac{M_{h}}{M}\,h_{1}^{\perp}\frac{\tilde{H}}{z}\right)\right],\\ [S_{\parallel}]\ F_{UL}^{\sin\phi_{h}} &= \mathcal{C}\left[-\frac{2\left(\hat{\mathbf{h}}\cdot\mathbf{k}_{T}\right)\left(\hat{\mathbf{h}}\cdot\mathbf{p}_{T}\right)-\mathbf{k}_{T}\cdot\mathbf{p}_{T}}{MM_{h}}\,h_{1}^{\perp}H_{1}^{\perp}\right], \end{split}$$

(ロ) (回) (E) (E) (E) (O)

$$\begin{split} \left[S_{\parallel} \lambda_{e} \right] \ F_{LL} &= C\left[g_{1L} D_{1} \right], \\ \left[S_{\parallel} \lambda_{e} \right] \ F_{LL}^{\cos \phi_{h}} &= \frac{2M}{Q} \ C\left[\frac{\hat{\mathbf{h}} \cdot \mathbf{k}_{T}}{M_{h}} \left(xe_{L} H_{1}^{\perp} - \frac{M_{h}}{M} g_{1L} \frac{\tilde{D}^{\perp}}{z} \right) - \frac{\hat{\mathbf{h}} \cdot \mathbf{p}_{T}}{M} \left(xg_{L}^{\perp} D_{1} + \frac{M_{h}}{M} h_{1L}^{\perp} \frac{\tilde{E}}{z} \right) \right], \\ \left[\left[S_{\perp} \right] \right] \ F_{UT,T}^{\sin(\phi_{h} - \phi_{S})} &= C\left[-\frac{\hat{\mathbf{h}} \cdot \mathbf{p}_{T}}{M} f_{1}^{\perp} D_{1} \right], \quad \text{Sivers function} \\ \left[\left[S_{\perp} \right] \right] \ F_{UT,L}^{\sin(\phi_{h} - \phi_{S})} &= 0, \\ \left[\left[S_{\perp} \right] \right] \ F_{UT}^{\sin(\phi_{h} - \phi_{S})} &= C\left[-\frac{\hat{\mathbf{h}} \cdot \mathbf{k}_{T}}{M_{h}} h_{1} H_{1}^{\perp} \right], \quad \text{transversity and Collins function} \\ \left[\left[S_{\perp} \right] \right] \ F_{UT}^{\sin(3\phi_{h} - \phi_{S})} &= C\left[\frac{2 \left(\hat{\mathbf{h}} \cdot \mathbf{p}_{T} \right) \left(\mathbf{p}_{T} \cdot \mathbf{k}_{T} \right) + \mathbf{p}_{T}^{2} \left(\hat{\mathbf{h}} \cdot \mathbf{k}_{T} \right) - 4 \left(\hat{\mathbf{h}} \cdot \mathbf{p}_{T} \right)^{2} \left(\hat{\mathbf{h}} \cdot \mathbf{k}_{T} \right) h_{1}^{\perp} H_{1}^{\perp} \right], \\ \left[\left[S_{\perp} \right] \right] \ F_{UT}^{\sin(\phi_{h} - \phi_{S})} &= C\left[\frac{2 \left(\mathbf{k} \cdot \mathbf{p}_{T} \right) \left(\mathbf{p}_{T} \cdot \mathbf{k}_{T} \right) + \mathbf{p}_{T}^{2} \left(\hat{\mathbf{h}} \cdot \mathbf{k}_{T} \right) - 4 \left(\hat{\mathbf{h}} \cdot \mathbf{p}_{T} \right)^{2} \left(\hat{\mathbf{h}} \cdot \mathbf{k}_{T} \right) h_{1}^{\perp} H_{1}^{\perp} \right], \\ \left[\left[S_{\perp} \right] \right] \ F_{UT}^{\sin(\phi_{h} - \phi_{S})} &= C\left[\frac{2 \left(\mathbf{k} \cdot \mathbf{p}_{T} \right) - \frac{M_{h}}{M} h_{1}^{\perp} \frac{H}{z} \right) \\ &- \frac{\mathbf{k}_{T} \cdot \mathbf{p}_{T}}{Q} C\left\{ \left(xf_{T} D_{1} - \frac{M_{h}}{M} h_{1} \frac{H}{z} \right) \\ &- \frac{\mathbf{k}_{T} \cdot \mathbf{p}_{T}}{2MM_{h}} \left[\left(xh_{T} H_{1}^{\perp} + \frac{M_{h}}{M} g_{1T} \frac{G^{\perp}}{z} \right) - \left(xh_{T}^{\perp} H_{1}^{\perp} - \frac{M_{h}}{M} f_{1}^{\perp} \frac{D^{\perp}}{z} \right) \right] \right\}, \\ \left[\left[S_{\perp} \right] \right] \ F_{UT}^{\sin(2\phi_{h} - \phi_{S})} &= \frac{2M}{Q} C\left\{ \frac{2 \left(\hat{\mathbf{h}} \cdot \mathbf{p}_{T} \right)^{2} - \mathbf{p}_{T}^{2}}{2M^{2}} \left(xf_{T}^{\perp} D_{1} - \frac{M_{h}}{M} h_{1}^{\perp} \frac{H}{z} \right) \\ &= \frac{(\mathbf{k} \in \mathbf{k} \times \mathbf{k} \right\}$$

$$-\frac{2\left(\hat{\mathbf{h}}\cdot\mathbf{k}_{T}\right)\left(\hat{\mathbf{h}}\cdot\mathbf{p}_{T}\right)-\mathbf{k}_{T}\cdot\mathbf{p}_{T}}{2MM_{h}}\left[\left(xh_{T}H_{1}^{\perp}+\frac{M_{h}}{M}g_{1T}\frac{\tilde{G}^{\perp}}{z}\right)+\left(xh_{T}^{\perp}H_{1}^{\perp}-\frac{M_{h}}{M}f_{1T}^{\perp}\frac{\tilde{D}^{\perp}}{z}\right)\right]\right\},$$

$$\begin{split} [|\mathbf{S}_{\perp}|\lambda_{e}] \quad \mathbf{F}_{LT}^{\cos(\phi_{h}-\phi_{S})} &= \mathcal{C}\left[\frac{\hat{\mathbf{h}} \cdot \mathbf{p}_{T}}{M} \mathbf{g}_{1T} D_{1}\right], \\ [|\mathbf{S}_{\perp}|\lambda_{e}] \quad \mathbf{F}_{LT}^{\cos\phi_{S}} &= \frac{2M}{Q} \, \mathcal{C}\left\{-\left(\mathbf{x}\mathbf{g}_{T} D_{1} + \frac{M_{h}}{M} h_{1}\frac{\tilde{E}}{z}\right) \\ &+ \frac{\mathbf{k}_{T} \cdot \mathbf{p}_{T}}{2MM_{h}} \left[\left(\mathbf{x}e_{T} H_{1}^{\perp} - \frac{M_{h}}{M} \mathbf{g}_{1T} \frac{\tilde{D}^{\perp}}{z}\right) + \left(\mathbf{x}e_{T}^{\perp} H_{1}^{\perp} + \frac{M_{h}}{M} f_{1T}^{\perp} \frac{\tilde{G}^{\perp}}{z}\right)\right]\right\}, \\ [|\mathbf{S}_{\perp}|\lambda_{e}] \quad \mathbf{F}_{LT}^{\cos(2\phi_{h}-\phi_{S})} &= \frac{2M}{Q} \, \mathcal{C}\left\{-\frac{2\left(\hat{\mathbf{h}} \cdot \mathbf{p}_{T}\right)^{2} - \mathbf{p}_{T}^{2}}{2M^{2}} \left(\mathbf{x}\mathbf{g}_{T}^{\perp} D_{1} + \frac{M_{h}}{M} h_{1}^{\perp} \frac{\tilde{E}}{z}\right) \\ &+ \frac{2\left(\hat{\mathbf{h}} \cdot \mathbf{k}_{T}\right)\left(\hat{\mathbf{h}} \cdot \mathbf{p}_{T}\right) - \mathbf{k}_{T} \cdot \mathbf{p}_{T}}{2MM_{h}} \left[\left(\mathbf{x}e_{T} H_{1}^{\perp} - \frac{M_{h}}{M} \mathbf{g}_{1T} \frac{\tilde{D}^{\perp}}{z}\right) \\ &- \left(\mathbf{x}e_{T}^{\perp} H_{1}^{\perp} + \frac{M_{h}}{M} f_{1T}^{\perp} \frac{\tilde{G}^{\perp}}{z}\right)\right]\right\} \end{split}$$

・ロ・・母・・ヨ・・ヨ・ シック

correlation between hadron transverse polarization and quark transverse momentum

Collins function: H_1^{\perp}

 $\begin{array}{c} {\rm Cahn\ effect:}\\ \cos\phi\ {\rm modulation\ of\ SIDIS}\\ {\rm unpolarized\ cross\ section} \end{array}$

normalized ϕ distributions of hadrons about the virtual photon direction

 $\frac{1}{N_{\rm ev}}\frac{dN}{d\phi} = A + B\cos\phi + C\cos 2\phi + D\sin\phi$

(a)
$$\Pi < 1.0$$

(b) $\Pi > 1.0$

Adams et al. (E665), P.R. D 48 (1993) 5057

Cahn effect: $\cos \phi$ modulation of the SIDIS unpolarized cross section in charged hadron production

dashed line with exact kinematics, solid line includes terms up to $\mathcal{O}(k_{\perp}/Q)$ evidence for $\cos 2\phi_h$ at small values of ϕ_h

Anselmino et al., P.R. D 71 (2005) 074006, data from Arneodo et al. (EMC), Z. Phys. C 34 (1987) 277 🚊 🖉 🔍 🤅

Chekanov et al., hep-ex/0608053

□ > < E > < E > E のへで

longitudinal SSA: target-spin asymmetry $\implies F_{UL}^{\sin \phi_h}$

$$A(\phi_h) = \frac{d\sigma^{\Rightarrow}(\phi_h) - d\sigma^{\Leftarrow}(\phi_h)}{d\sigma^{\Rightarrow}(\phi_h) + d\sigma^{\Leftarrow}(\phi_h)}$$

SSA for transverse target polarization $\implies F_{UT}^{\sin(\phi_h \pm \phi_S)}$

$$A(\phi_h,\phi_S) = \frac{d\sigma(\phi_h,\phi_S) - d\sigma(\phi_h,\phi_S + \pi)}{d\sigma(\phi_h,\phi_S) + d\sigma(\phi_h,\phi_S + \pi)}$$

CLAS beam-spin asymmetry in $ep \rightarrow e' \pi^+ X$ at 4.3 GeV

FIG. 3. The beam-spin azimuthal asymmetry as a function of azimuthal angle ϕ , measured in the range z=0.5-0.8.

FIG. 7. Beam SSA as a function of P_{\perp} for $M_X > 1.1$ GeV (filled circles) and $M_X > 1.4$ GeV (open circles).

Avakian et al., P.R. D 69 (2004) 112004 + P.R.L. 84 (2000) 4047

beam-spin asymmetry in $ep \rightarrow e'\pi^+ X$

Afanasev, Carlson, P.R. D 74 (2006) 112027

HERMES single-spin azimuthal asymmetry in $eec{p}
ightarrow e' \pi^{\pm,0} X$

assuming
$$F_{UL}^{\sin 2\phi_h} \approx 0$$
, $F_{UL}^{\sin \phi_h} \propto h_L H_1^{\perp}$, $h_L \approx h_1$

range of predictions between $h_1 = g_1$ (non-relativistic limit) and $h_1 = \frac{1}{2}(f_1 + g_1)$ (Soffer limit)

Airapetian et al., P.R. D 64 (2001) 097101

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

HERMES SSA on transversely polarized proton

Collins azimuthal moment

 $F_{UT}^{\sin(\phi_h+\phi_S)}\propto h_1H_1^{\perp}$

Sivers azimuthal moment

$$F_{UT,T}^{\sin(\phi_h-\phi_S)}\propto f_{1T}^{\perp}D_1$$

exclusive vector meson (ρ^0) production

COMPASS charged hadron single-spin asymmetries in SIDIS of high-energy muons on transversely polarized ⁶LiD

Alexakhin et al., P.R.L. 94 (2005) 202002

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

Sivers function from HERMES data with Gaussian ansatz for transverse momenta

$$A_{UT}^{\sin(\phi-\phi_S)} \propto \frac{\sum_a e_a^2 \times f_{1T}^{\perp a}(x) D_1^a(z)}{\sum_a e_a^2 \times f_1^a(x) D_1^a(z)}$$

 $f_{1T}^{\perp u}(x, k_T^2) = -f_{1T}^{\perp d}(x, k_T^2) \mod 1/N_c \text{ corrections}$ Collins et al., P.R. D 73 (2006) 014021

Efremov et al., hep-ph/0702155

Efremov et al., hep-ph/0702155

~ ~ ~ ~

æ

global best fit to HERMES and Compass SIDIS and BELLE $e^+\text{-}e^-$ at KEK

$$h_1(x, \mathbf{k}_{\perp}) \sim [f_1(x) + g_1(x)] e^{-\alpha \mathbf{k}_{\perp}^2}, \qquad H_1^{\perp}(x, \mathbf{p}_{\perp}) \sim D_1(x) e^{-\beta \mathbf{p}_{\perp}^2}$$

Anselmino et al., hep-ph/0701006

< ∃ >

Anselmino et al., hep-ph/0701006

 $\frac{BELLE \ e^+e^- \to h_1 h_2 X}{d\sigma^{e^+e^- \to h_1 h_2 X}} = \sum_{q,s_1,s_2} \frac{d\hat{\sigma}^{e^+e^- \to q(s_1)\,\bar{q}(s_2)}}{d\cos\theta} D_{h_1/q,s_1}(z_1, \boldsymbol{P}_{h_1\perp}) D_{h_2/\bar{q},s_2}(z_2, \boldsymbol{P}_{h_2\perp})$

$$D_{h/q,s}(z, \boldsymbol{P}_{h\perp}) = H_1(z, \boldsymbol{P}_{h\perp}) + \frac{\boldsymbol{P}_{h\perp}}{zM_h} H_1^{\perp}(z, \boldsymbol{P}_{h\perp}) \hat{s} \cdot (\hat{\boldsymbol{p}} \times \hat{\boldsymbol{P}}_{h\perp})$$
$$\hat{s} \cdot (\hat{\boldsymbol{p}} \times \hat{\boldsymbol{P}}_{h\perp}) = \cos\phi$$

depending on the selected kinematics to detect hadrons one defines

$$\begin{aligned} \mathcal{A}_0(z_1, z_2) &= \frac{1}{\pi} \frac{z_1 z_2}{z_1^2 + z_2^2} \frac{\langle \sin^2 \theta_2 \rangle}{\langle 1 + \cos^2 \theta_2 \rangle} \left(\mathcal{P}_U - \mathcal{P}_L \right) \\ \mathcal{A}_{12}(z_1, z_2) &= \frac{1}{8} \frac{\langle \sin^2 \theta \rangle}{\langle 1 + \cos^2 \theta \rangle} \left(\mathcal{P}_U - \mathcal{P}_L \right) \end{aligned}$$

with $P_U(P_L)$ the contribution of unlike-sign (like-sign) pion production = 220

BELLE $e^+e^- \rightarrow h_1h_2X$

Anselmino et al., hep-ph/0701006

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

Left (right) panel: integrated (unintegrated) u and d transversity from global best fit. Soffer bound in blue.

Anselmino et al., hep-ph/0701006

Left (right) panel: integrated (unintegrated) favored $(u \to \pi^+)$ and unfavored $(u \to \pi^-)$ Collins function from global best fit. Positivity bound in blue.

Anselmino et al., hep-ph/0701006

(deeply) virtual Compton scattering (DVCS)

$$\frac{d\sigma}{dx_B \, dy \, d|\Delta^2| \, d\phi \, d\varphi} = \frac{\alpha^3 x_B \, y}{16\pi^2 Q^2 \sqrt{1 + 4x_B^2 M^2/Q^2}} |\mathcal{T}|^2$$

$$\left|\mathcal{T}\right|^{2} = \left|\mathcal{T}_{BH}\right|^{2} + \left|\mathcal{T}_{DVCS}\right|^{2} + \mathcal{T}_{DVCS}\mathcal{T}_{BH}^{*} + \mathcal{T}_{DVCS}^{*}\mathcal{T}_{BH}$$

◆□ > ◆□ > ◆三 > ◆三 > ● ● ●

virtual Compton scattering

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

the Compton amplitude

$$\mathcal{T}_{DVCS}^{\mu\nu} = i \int d^4 z \, e^{i \overline{q} \cdot z} \langle P' S' | \, T[J^{\mu}(-\frac{1}{2}z) \, J^{\nu}(\frac{1}{2}z)] | PS \rangle$$

to leading order

$$\mathcal{T}_{DVCS}^{\mu\nu} = g_{\perp}^{\mu\nu} \int_{-1}^{1} d\overline{x} \left(\frac{1}{\overline{x} - \xi + i\epsilon} + \frac{1}{\overline{x} + \xi - i\epsilon} \right) \sum_{q} e_{q}^{2} F^{q}(\overline{x}, \xi, t)$$

$$+ i\varepsilon^{\mu\nu\alpha\beta} n_{+\alpha} n_{-\beta} \int_{-1}^{1} d\overline{x} \left(\frac{1}{\overline{x} - \xi + i\epsilon} + \frac{1}{\overline{x} + \xi - i\epsilon} \right) \sum_{q} e_{q}^{2} \tilde{F}^{q}(\overline{x}, \xi, t)$$

Xiangdong Ji, PRL 78 (1997) 610; PR D 55 (1997) 7114

generalized parton distributions (GPDs)

•
$$F^{q}(\overline{\mathbf{x}},\xi,t) = \frac{1}{2} \int \frac{dz^{-}}{2\pi} e^{i\overline{\mathbf{x}}\overline{P}^{+}z^{-}} \langle P',\lambda' | \overline{\psi}(-\frac{1}{2}z) \gamma^{+}\psi(\frac{1}{2}z) | P,\lambda \rangle \Big|_{z^{+}=0, z_{T}=0}$$

$$= \frac{1}{2\overline{P}^{+}} \overline{u}(P',\lambda') \left[H^{q}(\overline{\mathbf{x}},\xi,t) \gamma^{+} + E^{q}(\overline{\mathbf{x}},\xi,t) \frac{i\sigma^{+\alpha}\Delta_{\alpha}}{2M} \right] u(P,\lambda),$$
•
$$\tilde{F}^{q}(\overline{\mathbf{x}},\xi,t) = \frac{1}{2} \int \frac{dz^{-}}{2\pi} e^{i\overline{\mathbf{x}}\overline{P}^{+}z^{-}} \langle P',\lambda' | \overline{\psi}(-\frac{1}{2}z) \gamma^{+}\gamma_{5} \psi(\frac{1}{2}z) | P,\lambda \rangle \Big|_{z^{+}=0, z_{T}=0}$$

$$= \frac{1}{2\overline{P}^{+}} \overline{u}(P',\lambda') \left[\tilde{H}^{q}(\overline{\mathbf{x}},\xi,t) \gamma^{+}\gamma_{5} + \tilde{E}^{q}(\overline{\mathbf{x}},\xi,t) \frac{\gamma_{5}\Delta^{+}}{2M} \right] u(P,\lambda)$$
•
$$F^{q}_{T}(\overline{\mathbf{x}},\xi,t) = \frac{1}{2} \int \frac{dz^{-}}{2\pi} e^{i\overline{\mathbf{x}}\overline{P}^{+}z^{-}} \langle P',\lambda' | \overline{\psi}(-\frac{1}{2}z) i\sigma^{+i}\gamma_{5}\psi(\frac{1}{2}z) | P,\lambda \rangle \Big|_{z^{+}=0, z_{T}=0}$$

$$= \frac{1}{2\overline{P}^{+}} \overline{u}(P',\lambda') \left[H^{q}_{T}(\overline{\mathbf{x}},\xi,t) i\sigma^{+i}\gamma_{5} + \tilde{H}^{q}_{T}(\overline{\mathbf{x}},\xi,t) \frac{\epsilon^{+j\alpha\beta}\Delta_{\alpha}\overline{P}_{\beta}}{M^{2}} + E^{q}_{T}(\overline{\mathbf{x}},\xi,t) \frac{\epsilon^{+j\alpha\beta}\Delta_{\alpha}\gamma_{\beta}}{2M} + \tilde{E}^{q}_{T}(\overline{\mathbf{x}},\xi,t) \frac{\epsilon^{+j\alpha\beta}\overline{P}_{\alpha}\gamma_{\beta}}{M} \right] u(P,\lambda).$$

Diehl, EPJ C 19 (2001) 485

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ = 臣 = のへで

link to ordinary parton distributions and form factors

• in the forward direction: $P = P' \Rightarrow \xi = 0, t = 0, \overline{x} \rightarrow x = k^+/P^+$

$$\begin{aligned} H^q(x,0,0) &= \begin{cases} f_1^q(x), & x > 0 \\ & -\overline{f}_1^q(-x), & x < 0 \end{cases} \\ \tilde{H}^q(x,0,0) &= \begin{cases} g_1^q(x), & x > 0 \\ & \overline{g}_1^q(-x), & x < 0 \end{cases} \\ H^q_T(x,0,0) &= \begin{cases} h_1^q(x), & x > 0 \\ & \overline{h}_1^q(-x), & x < 0 \end{cases} \end{aligned}$$

ξ-dependence disappears in first moments

$$\int_{-1}^{1} d\bar{x} H^{q}(\bar{x},\xi,t) = F_{1}^{q}(-t), \qquad \int_{-1}^{1} d\bar{x} E^{q}(\bar{x},\xi,t) = F_{2}^{q}(-t)$$
$$\int_{-1}^{1} d\bar{x} \tilde{H}^{q}(\bar{x},\xi,t) = G_{A}^{q}(-t), \qquad \int_{-1}^{1} d\bar{x} \tilde{E}^{q}(\bar{x},\xi,t) = G_{P}^{q}(-t)$$

twist-two operators and polynomiality of GPDs

using Lorentz symmetry, parity and time-reversal invariance

$$\begin{split} \langle P' | \mathcal{O}_{q}^{\mu_{1}\mu_{2}...\mu_{n}} | P \rangle &= \langle P' | \overline{\psi}_{q} i \mathcal{D}^{(\mu_{1}} \dots i \mathcal{D}^{\mu_{n-1}} \gamma^{\mu_{N}}) \psi_{q} | P \rangle \\ &= \overline{u}(P') \gamma^{(\mu_{1}} u(P) \sum_{i=0}^{\left[\frac{n-1}{2}\right]} A_{qn,2i}(t) \Delta^{\mu_{2}} \dots \Delta^{\mu_{2i+1}} \overline{P}^{\mu_{2i+2}} \dots \overline{P}^{\mu_{n}}) \\ &+ \overline{u}(P') \frac{\sigma^{(\mu_{1}\alpha} i \Delta_{\alpha}}{2M} u(P) \sum_{i=0}^{\left[\frac{n-1}{2}\right]} B_{qn,2i}(t) \Delta^{\mu_{2}} \dots \Delta^{\mu_{2i+1}} \overline{P}^{\mu_{2i+2}} \dots \overline{P}^{\mu_{n}}) \\ &+ C_{qn}(t) \operatorname{Mod}(n+1,2) \frac{1}{M} \overline{u}(P') u(P) \Delta^{(\mu_{1}} \dots \Delta^{\mu_{n}}) \end{split}$$
in particular
$$\int_{-1}^{1} d\overline{x} \, \overline{x}^{n} \, H^{q}(\overline{x},\xi,t) = \sum_{i=0}^{\left[\frac{n-1}{2}\right]} A_{qn,2i}(t) (2\xi)^{2i} + \operatorname{Mod}(n+1,2) \, C_{qn}(t) (2\xi)^{n} \\ &\int_{-1}^{1} d\overline{x} \, \overline{x}^{n} \, E^{q}(\overline{x},\xi,t) = \sum_{i=0}^{\left[\frac{n-1}{2}\right]} B_{qn,2i}(t) (2\xi)^{2i} - \operatorname{Mod}(n+1,2) \, C_{qn}(t) (2\xi)^{n} \\ \Longrightarrow \int_{-1}^{1} d\overline{x} \, \overline{x}^{n} \, [H^{q}(\overline{x},\xi,t) + E^{q}(\overline{x},\xi,t)] \quad \text{even polynomial in } \xi \text{ of degree } n \end{split}$$

Xiangdong Ji, J. Phys. G: Nucl. Part. Phys. 24 (1998) 1181

Ji's sum rule

• QCD angular momentum as gauge-invariant sum $\boldsymbol{J} = \boldsymbol{J}_q + \boldsymbol{J}_g$

$$J_{q,g}^i = rac{1}{2} \, \epsilon^{ijk} \int d^3x \, \left(T_{q,g}^{0k} \, x^j - T_{q,g}^{0j} \, x^k
ight)$$

• define form factor of quark and gluon energy-momentum tensor

$$\langle P'|T_{q,g}^{\mu\nu}|P\rangle = \overline{u}(P')\left[A_{q,g}(\Delta^2)\gamma^{(\mu}\overline{P}^{\nu)} + B_{q,g}(\Delta^2)\frac{\overline{P}^{(\mu}i\sigma^{\nu)\alpha}\Delta_{\alpha}}{2M} + C_{q,g}(\Delta^2)\frac{\Delta^{(\mu}\Delta^{\nu)}}{M}\right]u(P)$$

$$J_{q,g}^{i} = \frac{1}{2} \left[A_{q,g}(0) + B_{q,g}(0) \right]$$

$$\implies \langle P|J_z|P\rangle = \frac{1}{2} = J_q + J_g = \frac{1}{2}\Delta\Sigma + L_q + J_g$$

$$J_{q} = \frac{1}{2} \int_{-1}^{+1} d\bar{x} \, \bar{x} \left[H^{q}(\bar{x},\xi,t=0) + E^{q}(\bar{x},\xi,t=0) \right]$$

Xiangdong Ji, P.R.L. 78 (1997) 610
parton interpretation

in terms of the "good" light-cone components of the field

$$\overline{\psi}_q^c(-\frac{1}{2}y)\gamma^+\psi(\frac{1}{2}y) = \sqrt{2}\phi_q^{c\dagger}(-\frac{1}{2}y)\phi_q^c(\frac{1}{2}y)$$

with quark field in momentum space

$$\begin{split} \phi_{q}^{c}(z^{-}, \boldsymbol{z}_{\perp}) &= \int \frac{dk^{+}d\boldsymbol{k}_{\perp}}{2k^{+}(2\pi)^{3}} \Theta(k^{+}) \quad \sum_{\mu} \left\{ \frac{b_{q}(w)u_{+}(k, \mu) e^{-ik^{+}z^{-}+i\boldsymbol{k}_{\perp}\cdot\boldsymbol{z}_{\perp}}}{+d_{q}^{\dagger}(w)v_{+}(k, \mu) e^{+ik^{+}z^{-}-i\boldsymbol{k}_{\perp}\cdot\boldsymbol{z}_{\perp}}} \right\} \end{split}$$

$$\begin{split} \sum_{c,c'} \int \frac{dy^{-}}{2\pi} e^{ix\overline{P}^{+}y^{-}} \overline{\psi}(-\frac{1}{2}y) \gamma^{+} \psi(\frac{1}{2}y) \\ &= 2\sqrt{2} \int \frac{dk'^{+}d\mathbf{k}'_{\perp}}{2k'^{+}(2\pi)^{3}} \Theta(k'^{+}) \int \frac{dk^{+}d\mathbf{k}_{\perp}}{2k^{+}(2\pi)^{3}} \Theta(k^{+}) \\ &\times \sum_{\mu,\mu',c,c'} \delta_{c'c} \left\{ \delta(2x\overline{P}^{+} - k'^{+} - k^{+}) b^{\dagger}_{q}(w') b_{q}(w) u^{\dagger}_{+}(k',\mu') u_{+}(k,\mu) \\ &+ \delta(2x\overline{P}^{+} + k'^{+} + k^{+}) d_{q}(w') d^{\dagger}_{q}(w) v^{\dagger}_{+}(k',\mu') v_{+}(k,\mu) \\ &+ \delta(2x\overline{P}^{+} - k'^{+} - k^{+}) d_{q}(w') b_{q}(w) v^{\dagger}_{+}(k',\mu') v_{+}(k,\mu) \\ &+ \delta(2x\overline{P}^{+} - k'^{+} + k^{+}) b^{\dagger}_{q}(w') d^{\dagger}_{q}(w) u^{\dagger}_{+}(k',\mu') v_{+}(k,\mu) \Big\}_{\Xi} \end{split}$$

the parton interpretation of GPDs

(a)

(b)

(c)

 $\xi \text{-symmetry of GPDs } (\xi > 0): \quad (a) \ x > \xi, \quad (b) \ -\xi < x < \xi, \quad (c) \ x < = \xi$

Pasquini, Traini, S.B., P.R. D 71 (2005) 034022

2

▲ロト ▲圖ト ▲国ト ▲国ト

probing transversely localized partons

Burkardt, P.R. D 62 (2000) 071503

in impact parameter space, for purely transverse momentum transfer $(\Delta^+=0,$ i.e. $\xi=0,~t=-\Delta_{\perp}^2)$

$$q(x, \boldsymbol{b}_{\perp}) = \int \frac{d^2 \boldsymbol{\Delta}_{\perp}}{(2\pi)^2} e^{-i \boldsymbol{\Delta}_{\perp} \cdot \boldsymbol{b}_{\perp}} H^q(x, 0, -\boldsymbol{\Delta}_{\perp}^2)$$

probabilistic interpretation of form factors, parton densities and GPDs at $\xi = 0$

Belitsky, Radyushkin, Phys. Rep. 418 (2005) 판 · 《문 · 《문 · 《문 · 문 · 문 · 영익(

quark helicity projected out by $\frac{1}{2}\bar{q}\gamma^+[1+\lambda\gamma_5]q$ density of quark with helicity λ , momentum fraction x and transverse distance \boldsymbol{b}_{\perp} from center of proton in state $|\Lambda, \boldsymbol{S}\rangle$:

$$\frac{1}{2} \Big[F(x, \boldsymbol{b}_{\perp}) + \lambda \tilde{F}(x, \boldsymbol{b}_{\perp}) \Big] = \frac{1}{2} \Big[H(x, \boldsymbol{b}_{\perp}^2) - S^i \epsilon^{ij} b^j \frac{1}{m} \frac{\partial}{\partial \boldsymbol{b}_{\perp}^2} E(x, \boldsymbol{b}_{\perp}^2) + \lambda \Lambda \tilde{H}(x, \boldsymbol{b}_{\perp}^2) \Big]$$
proton polarization along \hat{x}

$$q(x, \boldsymbol{b}_{\perp})$$

 $q_X(x, \boldsymbol{b}_{\perp})$

 \rightarrow

N.B.
$$d_y^q \equiv \int dx \int d^2 \boldsymbol{b}_\perp \, \boldsymbol{b}_y \, q_X(x, \boldsymbol{b}_\perp) = \int dx \, E^q(x, 0, 0) = \frac{\kappa^q}{2M},$$

 $\kappa_u = 2\kappa_p + \kappa_n = 1.673, \qquad \kappa_d = 2\kappa_n + \kappa_p = -2.033$

←

Burkardt, Int. J. Mod Phys. A 18 (2003) 173

◆□> ◆□> ◆三> ◆三> ・三 ・のへで

representation of a GPD in impact parameter space for $\xi \neq 0$

- in a frame with large P^+ the proton is seen as a bunch of partons
- the center-of-momentum of the initial and final proton are differently displaced by a finite longitudinal momentum transfer
- GPDs probe the active partons at transverse position **b**

impact parameter representation of an unintegrated parton distribution

$$f_{1}(x, \boldsymbol{k}_{T}) = \int \frac{d^{2}\boldsymbol{z} \, dz^{-}}{16\pi^{3}} \, e^{ixp^{+}z^{-} - i\boldsymbol{k}_{T} \cdot \boldsymbol{z}} \, \langle \boldsymbol{p}, \lambda | \, \bar{\boldsymbol{q}}(0, -\frac{1}{2}z^{-}, -\frac{1}{2}\boldsymbol{z}) \, \gamma^{+} \boldsymbol{q}(0, \frac{1}{2}z^{-}, \frac{1}{2}\boldsymbol{z}) \, | \boldsymbol{p}, \lambda \rangle$$

$$f_1(x, \boldsymbol{z}) = \int d^2 \boldsymbol{k}_T \ e^{i \boldsymbol{k}_T \cdot \boldsymbol{z}} f_1(x, \boldsymbol{k}_T)$$

z is the Fourier conjugate variable to the transverse momentum k_T of the struck parton unintegrated parton distributions describe correlation in transverse position of a single quark

in contrast to GPDs, the struck quark now has different transverse location *relative* to spectator partons in the initial and the final state, in addition to overall shift of proton center of momentum dictated again by Lorentz invariance

spin density in the transverse plane and GPDs

quarks with transverse polarization **s** projected out by $\frac{1}{2}\bar{q}\gamma^+[1+(s\gamma)\gamma_5]q$ probability to find a quark with momentum fraction x and transverse spin s_{\perp} at distance **b** from the center-of-momentum of the nucleon with transverse spin S_{\perp} :

$$\begin{split} \rho(\mathbf{x}, \boldsymbol{b}, \boldsymbol{s}_{\perp}, \boldsymbol{S}_{\perp}) &= \frac{1}{2} \left[F(\mathbf{x}, \boldsymbol{b}) + s^{i} F_{T}^{i}(\mathbf{x}, \boldsymbol{b}, \boldsymbol{s}_{\perp}, \boldsymbol{S}_{\perp}) \right] \\ &= \frac{1}{2} \left[H + s^{i} S^{i} \left(H_{T} - \frac{1}{4M^{2}} \Delta_{b} \tilde{H}_{T} \right) & \text{monopole} \right. \\ &- S^{i} \varepsilon^{ij} b^{j} \frac{1}{M} E^{\prime} - s^{i} \varepsilon^{ij} b^{j} \frac{1}{M} \left(E_{T}^{\prime} + 2 \tilde{H}_{T}^{\prime} \right) & \text{dipole} \\ &+ s^{i} (2b^{i} b^{j} - b^{2} \delta_{ij}) S^{j} \frac{1}{M^{2}} \tilde{H}_{T}^{\prime\prime} \right] & \text{quadrupole} \end{split}$$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Spin densities

unpol. quark in unpol. target

unpol. quark in \perp target \perp pol. quark in unpol. target

B. Pasquini

Göckeler et al., hep-lat/0612032

useful literature besides that already cited

- M. Anselmino, A. Efremov, E. Leader: Phys. Rep. 261 (1995) 1–124; (E) 281 (1997) 399–400, hep-ph/9501369.
- V. Barone, A. Drago, P.G. Ratcliffe: Phys. Rep. 359 (2002) 1–168, hep-ph/0104283.
- A.V. Belitsky, A.V. Radyushkin: Phys. Rep. 418 (2005) 1–387, hep-ph/0504030.
- M. Diehl: Phys. Rep. 388 (2003) 41–277, hep-ph/0307382.
- M. Diehl, Th. Feldmann, R. Jakob, P. Kroll: Nucl. Phys. B 596 (2001) 33–65; (E) Nucl. Phys. B 605 (2001) 647, hep-ph/0009255.
- K. Goeke, M.V. Polyakov, M. Vanderhaeghen: Prog. Part. Nucl. Phys. 47 (2001) 401–515, hep-ph/0106012.
- R.L. Jaffe, Xiangdong Ji: Phys. Rev. Lett. 67 (1991) 552–555; Nucl. Phys. B 375 (1992) 527–560.
- Xiangdong Ji: Ann. Rev. Nucl. Part. Sci. 54 (2004) 413–450.
- P.J. Mulders: Transverse momentum dependence in structure functions in hard scattering processes, Lecture notes, Amsterdam, 2001.