NEMO
a status report

P. Piattelli

Istituto Nazionale di Fisica Nucleare
Laboratori Nazionali del Sud

2nd Roma International Conference on Astroparticle Physics
Villa Mondragone, may 13-15 2009
Outline

- R&D activities
 - Site exploration
 - Preliminary design of a km3 detector
- NEMO Phase-1
 - Aims and objectives of the project
 - Results and lessons learned
- NEMO Phase-2
 - The Capo Passero shore and deep-sea infrastructures
 - Developments of the technologies for the telescope construction
- Conclusions and prospects
 - The contribution of NEMO to the KM3NeT European consortium
NEMO: a brief history

- R&D activity towards the km3 started in 1998
- Search and characterization of an optimal deep-sea site
- Feasibility study and definition of a preliminary project of the km3
- Development of innovative technological solutions for the km3
 - Low power electronics
 - Directional PMTs
- Advanced R&D activities to validate the proposed technologies
 - Phase-1 and Phase-2 projects
The NEMO collaboration

INFN
Bari, Bologna, Catania, Genova, LNF, LNS, Napoli, Pisa, Roma
Università
Bari, Bologna, Catania, Genova, Napoli, Pisa, Roma “La Sapienza”

CNR
Istituto di Oceanografia Fisica, La Spezia
Istituto di Biologia del Mare, Venezia
Istituto Sperimentale Talassografico, Messina

INGV
Istituto Nazionale di Geofisica e Vulcanologia (INGV)

OGS
Istituto Nazionale di Oceanografia e Geofisica Sperimentale (OGS)

ISCTI
Istituto Superiore delle Comunicazioni e delle Tecnologie dell’Informazione (ISCTI)

More than 80 researchers from INFN and other italian institutes
The Capo Passero deep-sea site has been proposed in January 2003 to ApPEC as a candidate for the km3 installation.

- Depths of more than 3500 m are reached at about 100 km distance from the shore.
- Water optical properties are the best observed in the studied sites ($L_a \approx 70$ m @ $\lambda = 440$ nm).
- Optical background from bioluminescence is extremely low.
- Stable water characteristics.
- Deep sea water currents are low and stable (3 cm/s avg., 10 cm/s peak).
- Wide abyssal plain, far from the shelf break, allows for possible reconfigurations of the detector layout.
Seasonal dependence of optical properties

Absorption and attenuation lengths
(for $\lambda=440$ nm)

- $L_a = 66.3$ m
- $L_t = 55.5$ m

Average values $2850\div3250$ m

Absorption length values are compatible with optically pure sea water

Optical background

Data taken in collaboration with ANTARES

- PMT: 10"
- Thres: ~.5 SPE

Dead time: Fraction of time with rate > 200 kHz

The measured value of 30 kHz is compatible with pure 40K background

No seasonal dependence observed
km3 architecture: the NEMO proposal

- Detector based on tower-like structures with horizontal extent
- Non homogenous distribution of sensors
- Vertical sequence of “storeys”
- Structure packable for integration and deployment
Several different seafloor layouts have been considered and simulated.
Sensitivity to a point like source (\(\alpha = -2 \) and declination -60°) as a function of observation time

<table>
<thead>
<tr>
<th>years</th>
<th>Ratio IceCube/127 torri</th>
<th>Ratio IceCube/91torri</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.7</td>
<td>1.9</td>
</tr>
<tr>
<td>3</td>
<td>3.1</td>
<td>2.2</td>
</tr>
<tr>
<td>5</td>
<td>3.5</td>
<td>2.4</td>
</tr>
</tbody>
</table>
NEMO Phase-1
P. Piattelli

RICAP09, Villa Mondragone, 14-5-2009

NEMO Fase-1

Shore laboratory, Port of Catania

25 km E offshore Catania
2000 m depth

TSS Frame
Buoy
Junction Box
e.o. connection
e.o. cable from shore
10 optical fibre, 6 conductors

NEMO mini-tower
(4 floors, 16 OM)

Junction Box

Mini-Tower unfurled

Mini-Tower compacted

03 04

300 m
Deployment and connection

Phase-1
installed in
december
2006 at the
Catania
Test Site
(2000 m
depth)
- Fully operative for 6 months (commissioning and data taking)
- Many critical items and solutions validated
 - Concept of “tower” with horizontal extent
 - Deployment of a compact structure with unfurling on the seabed
 - Double containment pressure vessels
 - “All-data-to-shore” synchronous acquisition
 - Low power electronics
 - Calibration (time and position) techniques
- Some technical problems encountered
 - Loss of buoyancy in the tower
 - Electro-optical penetrators in the Junction Box
- JB problems solved by replacing the defective components
- JB redeployed in 2008 and presently working
- Five months of data analysed
- “Lessons learned” fundamental for further developments
Scheme of the prototype tower

- **Fours floors**
 - Length 15 m
 - Vertical spacing 40 m
- **16 Optical Modules with 10” PMT**
- **Acoustic Positioning**
 - 2 hydrophones per floor
 - 1 beacon on the tower base
- **Environmental instrumentation**
 - 1 compass + tiltmeter in each Floor
 - Control Module
 - CTD (Conductivity-Temperature-Depth) probe on floor 1
 - C* (attenuation length meter) on floor 2
 - ADCP (Acoustic Doppler Profiler (including compass) on floor 4
Acoustic positioning system

Distance H0-H1 measured on floor 2 during 6 hours (1 Feb h.17-23)

Each point is averaged in 300 s

Construction
14.25±0.01

AP measure
14.24±0.06

Accuracy better than the required 10 cm
The instantaneous rate value is calculated by the Front-End board of the PMT averaging, in a time window of 1 µs, all the hits whose amplitude exceeds a given threshold equivalent to 0.3 spe.

The average measured rates are about 80 kHz for PMTs on floors 2, 3 and 4 as expected from 40K decay plus a contribution of diffuse bioluminescence.
Atmospheric muon angular distribution

23-24 January, 2007:

LiveTime: 11.31 hours
OnLine Trigger: $\sim 6 \cdot 10^7$
OffLine Trigger (7 seeds): 184709
Reconstructed tracks: 2260
Selected tracks: 965
Vertical Muon intensity as a function of depth from data recorded on 23-24 Jan, 2007
Compared with the relation from
NEMO Phase-2
STATUS
- 100 km electro-optical cable (>50 kW, 20 fibres) deployed in July 2007
- DC/DC power converter built by Alcatel tested and working; installation in July 2009
- On-shore laboratory (1000 m²) inside the harbour area of Portopalo completed
The Alcatel DC/DC system

System based on an innovative 10 kW DC/DC converter specifically designed by Alcatel for deep-sea applications

A final prototype of the DC/DC converter has been tested at full load in realistic conditions
Test of the DC/DC converter

- **Power Supply**: 10 kW
- **Artificial Line**: 100 km
- **MVC**: 10 kW, 10 kV / 400 V
Upgrades in the tower design

- DC power system to comply with the feeding system provided by Alcatel
- Data transmission system
- Segmented electro-optical backbone
- Acoustic system integrating both positioning and acoustic detection systems
KM3NeT

- European Consortium involving 40 Institutes from 10 countries
- Design Study project (FP6)
 - Define the technologies for the construction of the km3
- Preparatory Phase project (FP7)
 - Define the governance, legal and financial issues and prepare plans for construction of the Research Infrastructure
Convergence in KM3NeT

- Three full designs are presently considered in KM3NeT
- The final choice will be based on detector sensitivity, cost and reliability
- One of the designs, developed by INFN and IN2P3, is largely based on the experience and technical solutions developed in NEMO and ANTARES
 - Tower with horizontal extent
 - Packable structure for integration and deployment with unfurling on the seabed
 - Synchronous all-data-to-shore readout
 - DC power feeding system
New data daisy chain data transmission system

The link is bidirectional with asymmetric data rates:
- Up-going link @163.84 Mb/s for timing and slow control
- Down-going link @1.18 Gb/s for physics data and control

All nodes are identical
The system can be implemented using either a fibre or a copper backbone
“Daisy Chain” connections

Optical modules

Floor electronics module

Optical backbone

Electrical backbone

Optical connector

Electrical connectors

Hidrophone connector

Electrical connector to OM
Power distribution network

POWER BUDGET

<table>
<thead>
<tr>
<th></th>
<th>N° DU</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>84</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>Power per DU</td>
<td>300 W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DUs total power</td>
<td>25,2 kW</td>
<td>36 kW</td>
<td></td>
</tr>
<tr>
<td>Cable Losses < 4%</td>
<td>1 kW</td>
<td>1,5 kW</td>
<td></td>
</tr>
<tr>
<td>Cable voltage drops%</td>
<td>< 4%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Power off-shore</td>
<td>26,2 kW</td>
<td>37,5 kW</td>
<td></td>
</tr>
<tr>
<td>MVC losses ((\eta=80%))</td>
<td>6,6 kW</td>
<td>9,4 kW</td>
<td></td>
</tr>
<tr>
<td>Main Cable losses</td>
<td>1,7 kW</td>
<td>3,5</td>
<td></td>
</tr>
<tr>
<td>TOTAL POWER LOSSES</td>
<td>27%</td>
<td>28%</td>
<td></td>
</tr>
<tr>
<td>POWER ON SHORE</td>
<td>34,5 kW</td>
<td>50,4 kW</td>
<td></td>
</tr>
</tbody>
</table>

- Electo-Optical Cable
- 100 Km
- 10 K

RICAP09, Villa Mondragone, 14-5-2009
One idea for the seabed layout and cable network
Optical network to shore

- Ring topology based on circulators: doubled offshore and onshore to achieve 100% redundancy;
- 1 ring can support as many DUs as fiber bandwidth allows;
- Standard ITU frequency grids accommodate up to 60 ÷ 132 colors (100 GHz or 50 GHz grid spacing)
- 3 rings are needed to transport 120 DUs;
- 6 fibers of the Main Electro Optical Cable are used to setup the 3 rings between shore and subsea;
Near future plans

- Test of a “mechanical” tower in May-June 2009 to validate the structure and the new buoy design at 3500 m depth

- Building of a fully equipped tower with a reduced number of floors to test the technological solutions proposed in KM3NeT (in collaboration with the IN2P3 groups) to be deployed in spring 2010
Conclusions …

- In a ten year long activity NEMO has provided significant contributions towards the km3 detector
 - Identification of an optimal deep-sea site
 - Development and test of technologies for the telescope construction

- The NEMO collaboration is presently taking part in the KM3NeT EU consortium
... and outlook

- For the construction of the KM3NeT European Research Infrastructure a multi-site option is also being considered.
- This option fits a funding scheme in which most of the funding will come on a regional basis.
- The assessment of the single vs multi-site option will be done within the Preparatory Phase project, but preliminary results indicate that a multi-site telescope has at least the same sensitivity than a single one.
- Initiatives to get fundings are under way in several countries (France, Greece, Italy, The Netherlands).
- In Italy the Sicilian Regional Government has proposed the funding of a km3 size detector on national funds for the less developed regions.