

Rare and charmless decays at CDFII IFAE 2006, Pavia

Michael J. Morello (morello@fnal.gov) Istituto Nazionale di Fisica Nucleare Pisa

for the CDFII collaboration

Outline

This focus on rare and charmless B decays.

Analysis of such modes provides CDF with a physics program competitive with (B^0 modes), and complementary (B^0_s modes) to B-factories. Well suited to illustrate the methods used in flavor physics analyses at CDF.

- CDF at the Tevatron: HF physics at hadron colliders;
- triggering on displaced tracks;
- search for FCNC $B^{0}_{(s)} \longrightarrow \mu^{+}\mu^{-}$ decays;
- BRs and DCPV in $B^{0}_{(s)} \rightarrow \pi\pi/K\pi/KK$ (PP) decays;
- $\Delta\Gamma_{\rm s}/\Gamma_{\rm s}$ in ${\rm B}^{0}_{\rm s} \longrightarrow {\rm K}^{+}{\rm K}^{-}$ decays;
- BR in $B^0_{s} \rightarrow \phi \phi$ (VV);
- Recent measurement of B_c mass and lifetime.

The Tevatron $p\overline{p}$ collider

36 (proton) × 36 (antiproton) bunches X-ing time 396 ns at $\sqrt{s} = 1.96$ TeV record peak is L=1.82 × 10³² cm⁻² s⁻¹ ~ 18 pb⁻¹ / week recorded on tape # of interactions per bunch-crossing: < N >poisson = 2 (at 10³² cm⁻²s⁻¹)

L_{int}~ 1400 pb⁻¹ on tape (~ 1000 pb⁻¹ for analysis)

Stable data taking efficiency: > 85%. Results here use ~180-800 pb⁻¹ $_{3}$

The CDF II detector

Heavy Flavor physics at the Tevatron

The Good

 $b\overline{b}$ production x-section O(10⁵) larger than e⁺e⁻ at Υ (4S) /Z⁰. Incoherent strong production of all *b*-hadrons: B^+ , B^0 , B^0_s , B_c , Λ_b , Ξ_b ...

The Bad

Total inelastic x-section ×10³ larger than $\sigma(b\overline{b})$. BRs' for interesting processes O(10⁻⁶).

...and The Ugly

Messy environments with large combinatorics.

BELLE CDF

Need highly selective trigger

B hadron signature

"Long" (~1.5 ps) lifetime of *b*hadrons: a powerful signature against light-quark background.

Traditional *B*-trigger at hadronic collider: look for one $(B \rightarrow lvX)$ or two leptons $(B \rightarrow J/\psiX)$ exploiting easy signature and ~20% of total width.

For the first time, trigger HF without leptons: rare hadronic *B* decays. Cut online (L2 trigger) on impact parameter d_0 (track).

Very high-purity samples of hadronic *B* (and *D*) decays. Price to pay: trigger-bias distorts proper-time distributions. Complexity in lifetime-based analyses.

PLANE TRANSVERSE TO THE BEAM

Sound So

Charmless B⁰/B⁰_s \rightarrow PP ($\pi\pi/K\pi/KK$)

- Interpretation of B results often plagued by uncertainties from nonperturbative QCD uncertainties.
- Joint study of B⁰ and B⁰_s decays into 2-body charm-less ($\pi\pi/K\pi/KK$) plays a key role, related by subgroup of SU(3) symmetry.
- Until the beginning of the planned Y(5S) at Belle only CDF has simultaneous access to both B⁰/B⁰_s→h⁺h²⁻ decays thus exploiting an original physics program complementary to the B-Factories

Some specific motivations

- These modes include $B^0 \rightarrow K^+\pi^-$, where the direct CP asymmetry was observed for the first time in B sector (B-Factories).
- Large (~10%) effect established, but still many things to understand, i.e. asymmetry in B⁰ not compatible with B⁺ as expected. [Gronau and Rosner, Phys. Rev. D71:074019, 2005]
- Additional experimental input is helpful: copious yields at TeVatron make CDF a major player in the direct-CPV game.
- Compare rates and asymmetries of $B^0 \rightarrow K^+\pi^-$ and $B^0_s \rightarrow K^-\pi^+$ unique to CDF to probe NP with no need for assumption, just SM. [Lipkin, Phys. Lett. B621:126, .2005]
- Currently accessible BR can constrain theory too: compare CDF measurements with allowed regions in spaces of $B^0 \rightarrow \pi^+\pi^-$ and $B^0_s \rightarrow K^+K^-$ observables: a probe for both γ and NP [Fleischer and Matias PRD66: 054009,2002 London and Matias PRD70:031502, 2004]
- From lifetime of $B_s^0 \rightarrow K^+K^-$ (unique to CDF), information on the relative widthdifference $\Delta\Gamma_s/\Gamma_s$. Compare with B_s^0 mixing results to search for new, CPviolating physics. Can be strong affected by new, CP-violating physics.

Trigger confirmation

TRIGGER REQUIREMENTS

- Two oppositely-charged tracks (i.e. *B* candidate) from a long-lived decay:
 - track's impact parameter >100 μm;
 - B transverse decay length > 200 μm;
- B candidate <u>pointing back to primary</u> <u>vertex</u>:
 - impact parameter of the $B < 140 \mu m$;
- <u>Reject light-quark background</u> from jets:
 - transverse opening angle [20°, 135°];
 - $p_{T1} \text{ and } p_{T2} > 2 \text{ GeV};$
 - $p_{T1} + p_{T2} > 5.5 \text{ GeV}.$

Signal (BR ~ 10⁻⁵⁾ visible with just offline trigger cuts confirmation:

CDFII preliminary, L_{int}=355 pb⁻¹

$B^0/B^0_s \rightarrow PP DATA SAMPLE$

Optimize cuts (IP, transverse decay length, 3D-vertex quality, isolation of B candidate and IP of both tracks) by minimizing the expected statistical resolution on A_{CP} . Its expression in terms of S and B is determined from actual resolutions observed in analysis of toy-MC samples.

Despite excellent mass resolution, modes overlap an unresolved peak, and PID resolution is insufficient for event-by-event separation. Hence, fit signal composition with a Likelihood that combines information form kinematics $(M_{\pi\pi}, \alpha = (1-p_1/p_2) \cdot q_1 \text{ where } p_1 < p_2, p_{tot} = p_1 + p_2)$ and particle ID (dE/dx). 10

Fit of composition

Un-binned ML fit that uses kinematic and PID information from 5 observables

Signal shapes: from MC and analytic formula Background shapes: from data sidebands sign and bckg shapes from $D^0 \longrightarrow K^- \pi^+ 11$

Direct CP asymmetry $B^0 \rightarrow K^+\pi^-$ (360 pb⁻¹)

 $A_{\mathsf{CP}}^{\mathrm{Babar}}(B^0 \to K^+\pi^-) = -0.133 \pm 0.030 \ (stat.) \pm 0.009 \ (syst.) \qquad A_{\mathsf{CP}}^{\mathrm{Belle}}(B^0 \to K^+\pi^-) = -0.113 \pm 0.022 \ (stat.) \pm 0.008 \ (syst.) = -0.113 \pm 0.022 \ (stat.) \pm 0.008 \ (syst.) = -0.113 \ (syst.) = -0.113 \ (syst.) = -0.113 \ (syst.$

Result is ~1.5 σ different from 0, and compatible with *B*-factories results. With data <u>already available</u> on disk (1fb⁻¹), we expect ~2.5% statistical uncertainty: CDF will be soon (summer) <u>very</u> competitive.

In same data, is likely first observation of $B_s^0 \rightarrow K^-\pi^+$ self-tagged decay: will measure its BR and CP asymmetry that is expected large. [Lipkin, Phys.Lett.B621:126, 2005].

Systematics $A_{CP}(B^0 \rightarrow K^+\pi^-)$ (360 pb⁻¹)

Total systematic uncertainty is 0.7%, much smaller than the 3.9% statistical uncertainty.

- dE/dx model (partially <u>reduces with statistics</u>);
- nominal B-meson masses input to the fit (reduces with statistics);
- mass-resolution model;
- global scale of masses;
- charge-asymmetries in background;
- combinatorial background model.

BRs: $B^0/B^0_s \rightarrow PP$ (180 pb⁻¹)

$$\frac{f_s \cdot BR(B^0_s \to K^+K^-)}{f_d \cdot BR(B^0 \to K^+\pi^-)} = 0.46 \pm 0.08 \ (stat.) \pm 0.07 \ (syst.)$$

 $\underline{B_{s}^{0}}$ → $K^{+}K^{-}$ decay established. BR ratio may favor large SU(3) breaking as predicted from sum rules [Khodjamirian et al. PRD68:114007, 2003].

$$\frac{f_s \cdot BR(B_s^0 \to K^- \pi^+)}{f_d \cdot BR(B^0 \to K^+ \pi^-)} < 0.08 @ 90\% \ C.L.$$

No evidence for $B_s^0 \rightarrow K^-\pi^+$, set a limit a factor ~40 better than PDG04.

$$\frac{BR(B_s^0 \to \pi^+\pi^-)}{BR(B_s^0 \to K^+K^-)} < 0.05 @ 90\% \ C.L \qquad \frac{BR(B^0 \to K^+K^-)}{BR(B^0 \to K^+\pi^-)} < 0.10 @ 90\% \ C.L.$$

Upper limit on annihilation mode $B_s^0 \rightarrow \pi^-\pi^+$ and $B^0 \rightarrow K^+K^-$ Great improvement on $B_s^0 \rightarrow \pi^-\pi^+$: a factor >100 below PDG04 (time-evolutions of $B_s^0 \rightarrow \pi^-\pi^+$ and $B_s^0 \rightarrow K^-K^+$ assumed the same).

$B_{s}^{0} \rightarrow K^{+}K^{-}$ lifetime (360 pb⁻¹)

Add lifetime information to the fit of composition:

Trigger bias for signal is extracted from detailed simulation.

Procedure validated in unbiased $B \rightarrow J/\psi X$ decays from dimuon trigger.

Check that lifetime fits of samples <u>with/without</u> applying track-trigger cuts yield consistent results.

Lifetime p.d.f for background is extracted from higher mass data sideband.

 $B_{s}^{0} \rightarrow K^{+}K^{-}$ lifetime results (360 pb⁻¹)

	$c\tau(B^0)$ [µm]	$c\tau(B_s^0 \to K^+K^-) \; [\mu \mathrm{m}]$
both free	452 ± 24	463 ± 56
$c\tau(B^0)$ constrained to PDG	_	458 ± 53

 $B_{s}^{0} \rightarrow K^{+}K^{-}$ predicted ~95% CP-even: has the lifetime of "light B⁰_s" :

 $\tau_L = 1.53 \pm 0.18 \ (stat.) \pm 0.02 \ (syst.)$ ps

Combine with HFAG average $(T_1^2 + T_H^2)/(T_1 + T_H)$:

$$\frac{\Delta \Gamma_s^{\mathsf{CP}}}{\Gamma_s^{\mathsf{CP}}} = -0.08 \pm 0.23 \ (stat.) \pm 0.03 \ (syst.)$$

detector alignment;

- input $p_{T}(B)$ in simulation; \Box trigger-bias.
- dE/dx model:
- lifetime model of background;

CDF Run II Preliminary 360 pb⁻¹ $B_d \rightarrow K\pi B_d \rightarrow \pi\pi$ 250 200 150 100 50 F 0.05 0.15 0.1 0.2 0.25 ct (cm)

Dominant systematics :

 $\Delta\Gamma_{\rm s}/\Gamma_{\rm s}$ compatible with direct measurement from B⁰_s \rightarrow J/ $\psi\phi$ [PRL 94:101803(2005)]

Behind the corner: $\Lambda^0_{b} \rightarrow p\pi/pK$ (190 pb⁻¹)

[Phys. Rev. D72, 051104 (2005)]

Our current limit on 190 pb⁻¹ is already the world best BR($\Lambda_b \rightarrow pK$) + BR($\Lambda_b \rightarrow p\pi$) < 2.3·10⁻⁵ @ 90% C.L World best

Assuming theoretical values for BRs, expect in 1 fb⁻¹ σ (BRs)_{TOY} \cong [0.3-0.2] \cdot 10⁻⁶, data already under analysis using the complete framework for B⁰_(s) \rightarrow PP. Likely observation and measurement of BRs and "direct CPV".

Charmless $B^0/B^0_s \rightarrow VV$

Motivations

- CDF can access to B⁰_s→VV decays into self-coniugate final states, like B⁰_s→φφ.
- Angular correlations (polarization) between the final state particles allow the statistical separation of the CP-even and CP-odd components of the decay amplitude.
- With sufficient statistics, this decomposition allows of the B_s^0 decay width difference $\Delta\Gamma_s$, CKM studies and the tests of decay polarization.
- The BR measurement gives insight into the size of penguin amplitude.
- $B_s^0 \rightarrow \phi \phi$ proceeds through a pure b $\rightarrow sss$ transition \implies probe for NP [hep-ph/0510245].
- Hints of NP in $B^0 \rightarrow \phi K^0_s$, $B^0 \rightarrow \eta' K^0_s$ from B-factories suggest to investigate in other pure b \rightarrow sss transitions like $B^0_s \rightarrow \phi \phi$ and $B^+ \rightarrow \phi K^+$.

180 pp

 $B_{s} \rightarrow \phi \phi (VV)$

Normalize to another $B_s \rightarrow VV: B_s \rightarrow J/\psi\phi$ Using the same hadronic trigger

On the first 180 pb⁻¹ data CDF established the the $B_s \rightarrow \phi \phi$ decay and measure its BR: [PRL 95:031801(2005)]

$$BR(B_s^0 \rightarrow \phi \phi) = (14 + 6_{-5}(stat.) \pm 6(syst.)) \times 10^{-6}$$

Soon update with the completely angular analysis using the full data sample (1fb⁻¹)!!!!

Search for FCNC current $B^0/B^0_s \rightarrow \mu^+ \mu^-$

Motivation: $B^0/B^0_s \rightarrow \mu^+\mu^-$

The BRs predicted form SM are about two orders of magnitude smaller than the current experimental sensitivity. However NP (SUSY) can significantly enhance (up to x100) these BRs \implies simultaneous observation of B⁰/B⁰_s $\rightarrow \mu^{+}\mu^{-}$ is important in determining structure of NP otherwise significant constraints to many SUSY models.

Analysis strategy: $B^0/B^0 \rightarrow \mu^+ \mu^-$

Search the sample from rare dimuon trigger (tracking + μ -system): CMU(drift chambers) $|\eta|$ <0.6 muons with p_T>1.4 GeV CMX(drift tubes) 0.6< $|\eta|$ <1 muons with p_T>2 GeV

Offline reconstruction:

Confirmation trigger requirements Discriminate using multivariate LR (decay length, 3D-pointing of the B to PV, isolation)

Significant backgrounds from:

- (a) Sequential semileptonic: $b \to c\mu^-\nu, c \to \underline{s}\mu^+\overline{\nu}$
- (b) Double semileptonic decays: $b \to c\mu^- \nu, \overline{b} \to \overline{c}\mu^+ \overline{\nu}$
- (c) Drell-Yan $p\overline{p} \rightarrow \mu^+ \mu^-$
- (d) Fake leptons

Upper limit (780 pb⁻¹): $B^0/B^0 \rightarrow \mu^+\mu^-$

CDF (not D0) has good mass resolution (~24 MeV) allows separation of $B^0_{\ s} \rightarrow \mu^+\mu^-$ and $B^0 \rightarrow \mu^+\mu^-$:

Measure of BR (or set limit) with respect to normalization decay $B^+ \rightarrow J/\psi K^+$.

Number of events observed in either mass window compatible with background, set upper limit for both decays (world best):

NEW 780 pb⁻¹

BR(B⁰_s→ $\mu^+\mu^-$) < 8 × 10⁻⁸ @ 90% CL BR(B⁰→ $\mu^+\mu^-$) < 2.3 × 10⁻⁸ @ 90% CL

Previous results: PRL 95, 221805(2005) PRL 93, 032001(2004)

Future prospects for $B^0_s \rightarrow \mu^+ \mu^-$

- Assuming unchanged analysis techniques and reconstruction and trigger efficiencies are unaffected with increasing luminosity
- for 8fb⁻¹/experiment an exclusion at 90%C.L. down to 2×10⁻⁸ is possible
- both experiments (CDF + D0) pursue further improvements in their analysis.

B_c properties

Motivations

- Bound state of two heavy quarks $(b\overline{c})$.
- Good lab for potential models, lattice QCD (only meson with different heavy flavors).
- Experimental challenge
 - − $B^{0}:B^{+}:B^{0}{}_{s}:\Lambda^{0}{}_{b}\cong40:40:10:10, B^{-}{}_{c}\cong0.5\%$
 - Short lifetime \implies difficult selection
- First observation by CDF (1998) in semi-leptonic decays
 - properties not well measured.
- Today in Run II
 - higher statistics
 - more precise lifetime
 - access to exclusive modes \implies mass measurement.

 B_{C}^{-} observation and mass (800 pb⁻¹)

 B_c is not produced at B factories Full reconstruction allows for precise mass measurement.

Signal yield \cong 38.9 events Background yield \cong 26.1 between 6.24 and 6.3 GeV/c² Significance > 6 σ over search area

Bc

World best

π

28

B⁻_C lifetime (360 pb⁻¹)

 B_c lifetime extracted from semileptonic decay modes \implies more statistics than hadronic mode but also more background too

$$\tau_{B_c^+} = 0.474^{+0.073}_{-0.066}({\rm stat.}) \pm 0.033({\rm syst.})~{\rm ps.}$$

World best

Theoretical prediction [V. Kiselev hep/ph 0308214]: $\tau(B_c) \simeq 0.55 \pm 0.15$ ps.

Conclusions

As data keep flowing, CDF impact on FP becomes more and more crucial: Charm-less two-body *B* decays, a case-study to show how CDF is competitive with (B^0) and complementary to (B^0_s) B-factories.

- direct CPV in $B^0 \rightarrow K^+\pi^-$, small systematics, and as yet available statistics places CDF among the best by this summer;
- unique opportunity to combine $A_{CP}(B^0 \rightarrow K^+\pi^-)$ with $A_{CP}(B^0_s \rightarrow K^-\pi^+)$;
- precise and unique measurement of BR(B⁰_s \rightarrow K⁺K⁻): SU(3) breaking issue and γ angle useful information;
- $B_s^0 \rightarrow K^+K^-$: the statistics(1fb-1) may be sufficient to look at measurement timedependent $A_{CP}(t)$ (from mixing analysis: $\epsilon D^2 \cong 5\%$ and Δm_s);
- world best upper-limit on annihilation mode $B_s^0 \rightarrow \pi^+\pi^-$;
- world best upper-limit on mode $\Lambda_b \rightarrow pK/p\pi$ and big probability to observe this decay in the next step of the analysis.
- unique extraction of $\Delta\Gamma_s/\Gamma_s$ in $B_s^0 \rightarrow K^+K^-$ (already one of world best results);
- first establishment of $B_s^0 \rightarrow \phi \phi$ (VV) and measurement its BR with the possibility to perform very soon a full angular analysis;
- Unique simultaneous sensitivity to $B^0/B_s^0 \rightarrow \mu^+\mu^-$ (already world best results);
- study of B_c properties in a fully reconstructed and semi-leptonic mode.

backup

Luminosity

~ 1400 pb⁻¹ on tape (~ 1000 with silicon)

Stable data taking efficiency: > 85%. Results here use ~180-800 pb⁻¹ 32

Heavy flavor signature

"Long" (~1.5 ps) lifetime of *b*hadrons: a powerful signature against light-quark background. Before decaying, sufficiently boosted *b*-hadrons fly a distance resolvable with vertex detectors.

In Run I, CDF exploited this in offline analyses. In Run II, we exploit it at trigger level. An experimental challenge that requires:

PLANE TRANSVERSE TO THE BEAM

(1) <u>high resolution</u> vertex detector (silicon)

(2) <u>read out</u> silicon r- φ side (212,000 channels);

(3) do pattern recognition and track fitting in silicon.

withi<u>n 25 µs,</u>

Displaced track trigger: pros and cons

Very high-purity samples of hadronic *B* (and *D*) decays.

"golden" modes for B_{s}^{0} mixing

price to pay: trigger-bias distorts propertime distributions. Introduce complexity in lifetime-based analyses,more later...

Triggering heavy flavors

Traditional *B*-trigger at hadronic collider: look for one $(B \rightarrow lvX)$ or two leptons $(B \rightarrow J/\psi X)$ exploiting easy signature and ~20% of total width.

For the first time, trigger HF without leptons: rare hadronic B decays.

conventional	partially new approach	new approach
di-muon	electron or μ and <u>displaced track</u>	<u>two displaced</u> <u>tracks</u>
$B \longrightarrow$ charmonium $B \longrightarrow \mu \mu$	$B \rightarrow l v X$	$B \rightarrow hh$
two muons with:	electron (or μ) with:	two tracks with:
p _T > 1.5 GeV η < 1	$p_T > 4$ (or 1.5) GeV $ \eta < 1$	p _T > 2.0 GeV
	and one track with:	Σp _T > 5.5 GeV
	p _T > 2.0 GeV <i>d₀</i> >120 μm	d_0 > 100 μ m 35

Motivation: $B^0/B^0_s \rightarrow \mu + \mu -$

SUSY (MSSM)

However NP can significantly enhance these BRs: $BR(B^0{}_s \rightarrow \mu\mu) \propto (tan\beta)^6$ where β is the ratio of vacuum expectation values of the neutral CP-even Higgs fields. Large tan β enhance the decay rate (up to x100) to a level observable by the TeVatron.

Cuts optimization

Optimize cuts by minimizing the expected statistical resolution on A_{CP} . Its expression in terms of S and B is determined form actual resolutions observed in analysis of toy-MC samples.

Gain ~10% improvement in the resolution versus standard S/ $\sqrt{(S+B)}$.

<u>Unbiased</u> cut optimization where: for any combination cuts, evaluate the above score function; optimal cuts are found when the functions reach the maximum.

$B^0/B^0_s \rightarrow PP DATA SAMPLE$

Optimize cuts by minimizing the expected statistical resolution on A_{CP} . Its expression in terms of S and B is determined form actual resolutions observed in analysis of toy-MC samples.

Crucial isolation: fraction of p_T carried by the B after fragmentation. Rejects 18% of sig. and ~4x of background

Despite excellent mass resolution, modes overlap an unresolved peak, and PID resolution is insufficient for event-by-event separation. Hence, fit signal composition with a Likelihood that combines information form kinematics (masses and momenta) and particle ID (dE/dx).

Peak composition handle 1: Kinematic

Invariant $\pi\pi$ -mass vs signed momentum imbalance: (1-p_{min}/p_{max})q_{min} CDF MC CDF MC 5.40 5.40 $[GeV/c^2]$ Invariant $\pi\pi$ -mass [GeV/ c^2] • $B^0 \to \pi^+\pi^-$ • $B^0 \to K^+\pi^-$ • $\overline{B}^0 \to K^-\pi^+$ • $B^0 \to K^+K^-$ 5.35 5.35 ππ-mass 5.30 5.30 5.25 5.25 • $B_s^0 \to \pi^+\pi^-$ • $B_s^0 \to K^-\pi^+$ ° $\overline{B}_s^0 \to K^+\pi^-$ □ $B_s^0 \to K^+K^-$ 5.20 5.20 nvariant 5.15 5.15 5.10 -0.0 5.10¹.0 -0.5 0.5 0.0 1.0 -0.5 0.5 0.0 1.0 $\alpha = (1 - p_1/p_2) \times q_1$ $\alpha = (1 - p_1/p_2) \times q_1$

Discriminates among modes (and among self-tagging modes $K^+\pi^- / K^-\pi^+$)

Peak composition handle 2: dE/dx

~95% pure K and π samples from ~700K decays:

 $D^{*+} \rightarrow D^0 \pi^+ \rightarrow [K^- \pi^+] \pi^+$

Strong D*+ decay tags the D0 flavor. dE/dx accurately calibrated over tracking volume and time.

1.4 σ K/ π separation at p>2GeV (60% of "perfect" separation) ~11% residual correlation form gain/baseline fluctuations included int the fit of composition

Uncorrected fit results

Small (~1%) correction of fit result for trigger, acceptance, and selection efficiency to convert it into a measurement ⁴¹

Extraction of asymmetry

$$A_{\mathsf{CP}} = \frac{N(\overline{B}^{0} \to K^{-}\pi^{+})\Big|_{\operatorname{raw}}}{N(\overline{B}^{0} \to K^{-}\pi^{+})\Big|_{\operatorname{raw}}} \frac{\frac{\epsilon_{kin}(B^{0} \to K^{+}\pi^{-})}{\epsilon_{kin}(\overline{B}^{0} \to K^{-}\pi^{+})} - N(B^{0} \to K^{+}\pi^{-})\Big|_{\operatorname{raw}}}{\frac{\epsilon_{kin}(B^{0} \to K^{+}\pi^{-})}{\epsilon_{kin}(\overline{B}^{0} \to K^{-}\pi^{+})}} + N(B^{0} \to K^{+}\pi^{-})\Big|_{\operatorname{raw}}}$$

A < 2% charge asymmetry affects the CDF II detector and tracking code.

Only the different $K^+/K^$ interaction rate with material matters. Effect under control down to 0.5% in CDF $A_{CP}(D^0 \rightarrow h^+h^+)$ measurement (Phys.Rev.Lett.94:122001, 2005). Used unbiased kaons to extract the ~ 1% correction

Asymmetry Result (360 pb⁻¹)

$$A_{\mathsf{CP}}^{\mathrm{CDF}}(B^0 \to K^+ \pi^-) = -0.058 \pm 0.039 \; (stat.) \pm 0.007 \; (syst.)$$

Result is ~1.5 σ different from 0, and compatible with *B*-factories results:

 $A_{\mathsf{CP}}^{\mathrm{Belle}}(B^0 \to K^+\pi^-) = -0.113 \pm 0.022 \ (stat.) \pm 0.008 \ (syst.)$

 $A_{\mathsf{CP}}^{\mathrm{Babar}}(B^0 \to K^+ \pi^-) = -0.133 \pm 0.030 \ (stat.) \pm 0.009 \ (syst.)$

Systematic uncertainties from CDF and *B*-factories are comparable.

With data <u>already available</u> on disk, we expect ~2.5% statistical uncertainty: CDF will be soon (summer) <u>very competitive</u>.

In same data, is likely first observation of $B_s^0 \rightarrow K^-\pi^+$ decay: will measure its BR and CP asymmetry that is expected large. Model-independent NP-probe proposed by Lipkin (Lipkin, Phys.Lett.B621:126, 2005).

 $BR(B^{0}_{s} \rightarrow K^{+}K^{-})$ (180 pb⁻¹)

$$\frac{f_s \cdot BR(B_s^0 \to K^+K^-)}{f_d \cdot BR(B^0 \to K^+\pi^-)} = 0.46 \pm 0.08 \ (stat.) \pm 0.07 \ (syst.)$$

<u>The $B_s^0 \rightarrow K^+K^-$ decay has been established</u>.

 $BR(B_{s}^{0} \rightarrow K^{+}K^{-})$ consistent with QCD-factorization predictions [M. Beneke *et al.*, Nucl.Phys.B675:333-415,2003]

This BR ratio is crucial to check assumptions on U-spin symmetry. Exact Uspin symmetry would predict this BR ratio to be 1. Our result may favor large SU(3) breaking as predicted from QCD sum-rules [Khodjamirian *et al.* PRD68:114007, 2003].

For the summer update of this measurement with data already available on tape (1fb⁻¹). Expected resolution from TOY $\sigma \approx 0.02$.

The statistics(1fb⁻¹) may be sufficient to look at measurement time-dependent $A_{CP}(t)$ (from mixing analysis: $\epsilon D^2 \cong 5\%$ and Δm_s).

BR(B_s \rightarrow K⁻ π ⁺): upper limit (180 pb⁻¹)

$$\frac{f_s \cdot BR(B_s^0 \to K^- \pi^+)}{f_d \cdot BR(B^0 \to K^+ \pi^-)} < 0.08 @ 90\% \ C.L.$$

$$HFAG \ 2005$$

$$BR(B_s^0 \to K^- \pi^+) < 5.4 \cdot 10^{-6} @ 90\% \ C.L$$

On 180 pb⁻¹ no evidence for $B_s^0 \rightarrow K^-\pi^+$, set a limit a <u>factor ~40 better than</u> <u>PDG04</u>. Our current upper-limit constrains already

Assuming BR \cong 4.9 ·10⁻⁶ [hep-ph/0601214] \implies expect in 1fb⁻¹ σ (BR)_{TOY} \cong 0.8 ·10⁻⁶ corresponding to observe this decay with significance \cong 6 σ . This is a self-tagging mode \implies DCPV measurement to compare with A_{CP}(B⁰ \rightarrow K⁺ π ⁻).

Both $B_s^0 \rightarrow \pi^+\pi^-$ and $B_s^0 \rightarrow K^+K^-$ are annihilation-dominated decays and no observed yet them – they are hard to predict exactly. It will be very interesting to be able to measure one because these unknown

amplitudes contribute to many relevant process as $B^{0}_{s} \rightarrow K^{+}K^{-}$ decay.

$$\frac{BR(B_s^0 \to \pi^+\pi^-)}{BR(B_s^0 \to K^+K^-)} < 0.05 @ 90\% C.L.$$

Great improvement on annihilation mode $B_s^0 \rightarrow \pi^-\pi^+$. <u>A factor >100 below</u> <u>PDG04</u> (time-evolutions of $B_s^0 \rightarrow \pi^-\pi^+$ and $B_s^0 \rightarrow K^-K^+$ assumed the same).

$$\frac{BR(B^0 \to K^+K^-)}{BR(B^0 \to K^+\pi^-)} < 0.10 @ 90\% \ C.L.$$

Limit on pure annihilation/exchange mode $B^0 \rightarrow K^+K^-$. A factor ~3 above B-factories, expect much better performance on current sample(1fb⁻¹).

Incertezze sistematiche dominanti

dE/dx correlazione track-to-track (si riduce con la statistica);

- Masse dei mesoni B in input al fit (si riduce con la statistica);
- Efficienza relativa Isolamento tra $B_{s}^{0} e B^{0} (si riduce con la statistica);$
- Code radiative FSR;
- Trigger bias sull'efficienza;
- Dipend. della carica del dE/dx;

- Background shape;
- Asimmetria di carica nel background;
- Altro.

$B_s \rightarrow \phi \phi (VV)$ sample selection

TREGER: very similar requirement to $B \rightarrow PP$, based just on impact parameter Blind analysis (expected a small yield)

Optimized cuts: lifetime, Vertex quality, impact parameter of B_s , transverse momentum of ϕ , impact parameter of ϕ daughter tracks

Signal search and BR measurement \rightarrow maximize:

$$\frac{1}{S_{\min}} \approx \frac{\mathcal{E}(t)}{a/2 + \sqrt{B(t)}} ; a = 3$$

t=set of cuts

Where $\epsilon(t)$ is the signal efficiency from MC and B(t) is the expected background from sidebands extrapolation for the set t of selection

Cuts. For a=3 maximize the sensitivity region for a 3 sigma discovery with 99% C.L. [G.Punzi,hep-ph/0308063]

Nice feature:optimization independent of MC normalization

For the control sample $B_s \rightarrow J/\psi \phi$ maximize usual significance:

B±→*φ*K[±](VP) (180 pb⁻¹)

- Extended unbinned ML fit to:
 - M_{KKK}
 - Μ*φ*
 - Cosine of ϕ meson Helicity angle
 - dE/dx deviation from the expected value (pion hypothesis) for the lowest momentum trigger track.
- Background sources:
 - $B^{\pm} \rightarrow f^0 K^{\pm}$
 - $B^{\pm} \rightarrow K^{*0} \pi,$
 - $B_{u,d} \rightarrow \phi X$
 - combinatorial background

[PRL 95:031801(2005)] Normalize yield to $B^{\pm} \rightarrow J/\psi$ K[±] to measure $BR(B^{\pm} \rightarrow \varphi K^{\pm}) = (7.6 \pm 1.3(stat.) \pm 0.7(syst.)) \cdot 10^{-6}$ $A_{CP}(B^{\pm} \rightarrow \varphi K^{\pm}) = \frac{\Gamma(B^{-} \rightarrow \varphi K^{-}) - \Gamma(B^{+} \rightarrow \varphi K^{+})}{\Gamma(B^{-} \rightarrow \varphi K^{-}) + \Gamma(B^{+} \rightarrow \varphi K^{+})} = -0.07 \pm 0.17(stat.)^{+0.03}_{-0.02}(syst.)$

Systematics $A_{CP}(B^0 \rightarrow K^+ \pi^-)$

source	shift wrt central fit
mass scale	0.0022
mass resolution	0.0024
asymmetric momentum-p.d.f	0.0003
dE/dx	0.0050
input masses	0.0025
combinatorial background model	0.0019
p spectra of background	0.0005
MC statistics	0.0010
charge asymmetry	0.0022
$m_{\pi\pi}-p_{tot}$ non-factorizability	0.0018
TOTAL (sum in quadrature)	0.0074

B_c is not produced at B factories Full reconstruction allows for precise mass measurement.

Signal yield \cong 38.9 events Background yield \cong 26.1 between 6.24 and 6.3 GeV/c² Significance > 6 σ over search area

 $Mass(B_c) = 6275.2 \pm 4.3 \pm 2.3 \text{ MeV/c}^2$