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in general, g1(xB,Q2) : dependence on Q2 (= scaling violations) 
                                     calculable in perturbative QCD 
interest in g1(xB ,Q2) is due to its 1o Mellin moment   
 → information on quark helicity; it is calculable on lattice  

1o Mellin moment of g1 

helicity distribution and measurement of N spin 

exp. → A1 (A2~0) → g1 (xB,Q2) → Γ1(Q2) → Δqf   

1 relation for f ≥ 3 unknowns ! 
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in QPM for proton :   

3 unknowns → info from axial current  Aµ
a ~ γµγ5Ta  in 

semi-leptonic decays (ex. β decay) in baryonic octet 
Result: 

(cont’ed) 

QPM : wave function of q in P↑ “induced” by SUf(3) ⊗ SU(2) 

→ Γ1
p = 5/18 ~ 0.28  

     ΔΣ = 1 

Ellis-Jaffe sum rule (’73)   
(hp.=  perfect symmetry SUf (3)  +  Δs=0 ) 

from a fit to semi-leptonic decays → F= 0.47 ± 0.004 ; D=0.81± 0.003  

complicated corrections 
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µ↑p↑ → µp  at Q2 = 10.7 GeV2 

confirmed also  
from:  
SMC (Cern),  
E142 and E143  
(SLAC) 

R = σL/σT 
from unpolarized cross section 

Experiment  EMC (CERN, ’87) 
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F + D  + Γ1
p (Q2)  → ΔΣ and Δu, Δd, Δs 

Q2 = 10.7 GeV2       
ΔΣ = 0.13 ± 0.19       Δu = 0.78 ± 0.10  
                                  Δd = 0.50 ± 0.10   
                                  Δs = -0.20 ± 0.11 

negative sea  
polarization 

Q2 = 3 GeV2 
ΔΣ = 0.27 ± 0.04 

Spin crisis 
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(cont’ed) 

QPM                 Ellis – Jaffe sum rule                   exp.  

Γ1
p ~ 0.28 

ΔΣ = 1 

SUf (3)  +  Δs=0 
 
Γ1

p = 0.17 ± 0.01 
ΔΣ = 0.60 ± 0.12 

Q2 = 10.7 GeV2 
Γ1

p = 0.126 ± 0.010 ± 0.015 
ΔΣ = 0.13 ± 0.19 
 
Q2 = 3 GeV2 
ΔΣ = 0.27 ± 0.04 discrepancy 

   > 2σ	


Violation of SUf (3)  ? 

extrapolating g1(x) for x → 0  ? 

axial anomaly   
→ gluon contribution ? 

none of them   
quantitatively explains  
observed discrepancy 
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polarized Bjorken sum rule axial 

vector 

from weak couplings in  
β decay of N 

QPM: wave function of q in P according to SUf(3) ⊗ SU(2) 

pQCD corrections 

Sum rule :   
QPM + pQCD exp. 

0.27778 0.191 ± 0.002 0.209 ± 0.003 

exp.           1.267 ± 0.004 
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inclusive e+e- annihilations  

k’ k 

q = k+k’   time-like     q2 ≡ Q2 = s ≥ 0 

average on initial polarizations 
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(cont’ed) 
QPM picture 

no hadrons in initial and final states 

σ in QPM ≡ elementary σ  

Q2 = s   such that only γ are produced	


Q2 σ (e+e- → X) scales ! 

only Nc ways of   
creating a pair   
by conserving   
color in vertex  
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hence  

below  c  threshold 
        R = 3 (4/9 + 2/9) = 2 
around threshold      
         resonances J/ψ, ψ’ 
above  c  threshold       
        R = 2 + 3 4/9 = 3+1/3 
….. 

evidence of Nc  
test of gauge structures  
SUc (3)  and  SUf (3) 

see also 
Wu, Phys.Rep. C107 59 (84) 
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(factorization) theorem :   
 total cross section is finite in the limit of massless particles, 

             i.e. it is free from “infrared” (IR) divergences 

inclusive  e+e-  annihilations 

(Sterman, ’76, ’78) 
[generalization of theorem KLN (Kinoshita-Lee-Nauenberg)] 

QPM pQCD corrections 
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inclusive e+e-  

Jµ(0) Jν(0) 
PX 

theorem: dominant contribution in Bjorken limit comes from short distances 
                ξ → 0  (on the light-cone) 

but product of operators in the same space-time point  
is not always well defined in field theory !  
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K1 modified Bessel funct. 
     of 2nd kind 

Example: interacting neutral scalar field φ(x) 

depends only on p2=m2 → it is a constant N 

Example:  free neutral scalar field φ(x) ;  free propagator Δ(x-y) 

(cont’ed) 
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Operator Product Expansion 

(operational) definition of composite operator: 

(Wilson, ’69  first hypothesis; Zimmermann, ’73  proof in perturbation theory;  
  Collins, ’84  diagrammatic proof) 

•  local operators Ôi are regular for every i=0,1,2… 
•  divergence for x → y is reabsorbed in coefficients Ci 

•  terms are ordered by decreasing singularity in Ci , i=0,1,2… 
•  usually Ô0 = I , but explicit expression of the expansion must be  
   separately determined for each different process 

•  OPE is also an operational definition because it can be used   
   to define a regular composite operator.  
   Example :  theory φ4 ; the operator  φ(x)2  can be defined as 
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the Wick theorem 

scalar field  

“normal” order  :  :  =  move a† to left, a to right → annihilate on |0> 
“time” order T = order fields by increasing times towards left 

Step 1 

Step 2 
t2<t1 

analogously for t2>t1 

hence  

recursive  
generalization 
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analogously non interacting fermion fields 

general formula of Wick theorem: 

Pij = (-1)m  
m= n0 of permutations to reset indices in   
natural order   1, … ,i-1,i, … ,j-1,j, ... ,n 
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Wµν ⇒  Jµ(ξ) Jν(0)   with Jµ  e.m. current of quark  
normal product  : :  useful to define a composite operator for ξ → 0 
⇒ study T  [Jµ(ξ) Jν(0)]   per   ξ → 0  with Wick theorem 

divergent for ξ → 0  ⇒  OPE 

application to inclusive e+e-  and  DIS 
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singularities of free fermion propagator 

light-cone singularity 

degree of singularity proportional to powers of q in Fourier transform 
highest singularity in  
OPE coefficients 

dominant contribution to Jµ in Wµν	
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(cont’ed) 

most singular term in T [Jµ(ξ) Jν(0)]  

regular bilocal operator 

less singular term in T [Jµ(ξ) Jν(0)]  


