helicity distribution and measurement of N spin

in general, $g_1(x_B,Q^2)$: dependence on Q^2 (= scaling violations) calculable in perturbative QCD interest in $g_1(x_B,Q^2)$ is due to its 1° Mellin moment \rightarrow information on quark helicity; it is calculable on lattice

1° Mellin moment of g₁

$$\Gamma_1(Q^2) = \int_0^1 dx \, g_1(x, Q^2) = \frac{1}{2} \sum_{f, \bar{f}} e_f^2 \int_0^1 dx \, (q_f^{\uparrow}(x, Q^2) - q_f^{\downarrow}(x, Q^2)) = \frac{1}{2} \sum_{f \bar{f}} e_f^2 \, \Delta q_f$$
$$\Delta q_f = \int_0^1 dx \, (q_f^{\uparrow}(x, Q^2) - q_f^{\downarrow}(x, Q^2))$$

exp.
$$\rightarrow A_1 (A_2 \sim 0) \rightarrow g_1 (x_B, Q^2) \rightarrow \Gamma_1(Q^2) \rightarrow \Delta q_f$$

1 relation for $f \ge 3$ unknowns !

in QPM for proton :
$$\Gamma_1^p = \frac{1}{2} \left(\frac{4}{9} \Delta u + \frac{1}{9} \Delta d + \frac{1}{9} \Delta s \right)$$

QPM : wave function of q in P^{\uparrow} "induced" by SU_f(3) \otimes SU(2)

$$|P^{\uparrow}\rangle \approx \frac{1}{\sqrt{6}} \left(2u^{\uparrow} u^{\uparrow} d^{\downarrow} - u^{\uparrow} u^{\downarrow} d^{\uparrow} - u^{\downarrow} u^{\uparrow} d^{\uparrow} \right) \xrightarrow{} \Gamma_{1}{}^{\mathsf{p}} = 5/18 \sim 0.28$$
$$\Delta \Sigma = 1$$

3 unknowns \rightarrow info from axial current $A_{\mu}{}^{a} \sim \gamma_{\mu}\gamma_{5}T^{a}$ in semi-leptonic decays (ex. β decay) in baryonic octet Result:

$$\Gamma_{1}^{p} = \int_{0}^{1} dx \, g_{1}^{p}(x) \sim \frac{1}{12} \langle A_{\mu}^{3} \rangle \left[1 + \frac{5}{3} \frac{\langle A_{\mu}^{3} \rangle}{\langle A_{\mu}^{3} \rangle} \right] = \frac{1}{12} \left| \frac{g_{A}}{g_{V}} \right|_{np} \left[1 + \frac{5}{3} \frac{3F - D}{F + D} \right]$$

= 0.17 ± 0.01

 $\Delta \Sigma = 3F - D = 0.60 \pm 0.12$

from a fit to semi-leptonic decays \rightarrow F= 0.47 ± 0.004 ; D=0.81± 0.003

Ellis-Jaffe sum rule ('73)
(hp.= perfect symmetry
$$SU_f(3) + \Delta s=0$$
)
10-Apr-13

complicated corrections

Experiment EMC (CERN, '87)

Spin crisis

 $F + D + \Gamma_1^p (Q^2) \rightarrow \Delta \Sigma$ and $\Delta u, \Delta d, \Delta s$

× E142 + E143-p • E143-d \diamond SMC-d(92) \times SMC-d(94) \Box SMC-p \times EMC

4

QPM: wave function of q in P according to $SU_f(3) \otimes SU(2)$

exp. 1.267 ± 0.004

Sum rule :	QPM	+ pQCD	exp.
	0.27778	0.191 ± 0.002	0.209 ± 0.003
10-Apr-13			

inclusive e⁺e⁻ annihilations

10-Apr-13

QPM picture

no hadrons in initial and final states only N_c ways of creating a pair σ in QPM = elementary $\sigma e^+e^- \rightarrow q\bar{q}$ by conserving color in vertex $Q^2 = s$ such that only γ are produced γ $\sigma(e^+e^- \to q\bar{q}) \equiv \sigma(e^+e^- \to \mu^+\mu^-)$ e^+ e $\sigma(e^+e^- \to X) = (N_c) \sum_f e_f^2 \sigma(e^+e^- \to q\bar{q})$ $= N_c \sum_{f} e_f^2 \int d\Omega \, \frac{d\sigma}{d\Omega} (e^+ e^- \to \mu^+ \mu^-)$ $= N_c \sum_{f} e_f^2 \int d\Omega \frac{\alpha^2}{4Q^2} (1 + \cos^2 \theta) = N_c \sum_{f} e_f^2 \frac{4\pi \alpha^2}{3Q^2}$ $Q^2 \sigma (e^+e^- \rightarrow X) \text{ scales }!$ 10-Apr-13 8

inclusive e⁺e⁻ annihilations

(factorization) theorem :

total cross section is finite in the limit of massless particles,

i.e. it is free from "infrared" (IR) divergences

(Sterman, '76, '78)

[generalization of theorem KLN (Kinoshita-Lee-Nauenberg)]

$$\sigma_{tot} = N_c \frac{4\pi\alpha^2}{3Q^2} \sum_{f} e_f^2 \sum_{n} s_n \alpha_s^n (Q^2)$$

$$s_0 = 1$$
QPM pQCD corrections

inclusive e⁺e⁻

theorem: dominant contribution in Bjorken limit comes from short distances $\xi \rightarrow 0$ (on the light-cone)

but product of operators in the same space-time point is not always well defined in field theory !

Example: free neutral scalar field $\phi(x)$; free propagator $\Delta(x-y)$

Example: interacting neutral scalar field $\phi(x)$

$$\langle 0|\phi(x)^{2}|0\rangle = \int \frac{d\mathbf{p}}{(2\pi)^{3}2p^{0}} \sum_{n} \langle 0|\phi(0)|p,n\rangle\langle p,n|\phi(0)|0\rangle \qquad P|p,n\rangle = p|p,n\rangle \\ \phi(x) = e^{i\hat{P}\cdot x}\phi(0)e^{-i\hat{P}\cdot x}$$

$$\geq \int \frac{d\mathbf{p}}{(2\pi)^3 2p^0} |\langle 0|\phi(0)|p,1\rangle|^2 \equiv N \int \frac{d\mathbf{p}}{(2\pi)^3 2p^0} \to \infty$$

depends only on $\mathbf{p}^2 = \mathbf{m}^2 \to \text{it is a constant } N$

10-Apr-13

Operator Product Expansion

(Wilson, '69 first hypothesis; Zimmermann, '73 proof in perturbation theory; Collins, '84 diagrammatic proof)

(operational) definition of composite operator:

$$\widehat{A}(x)\,\widehat{B}(y) \equiv \sum_{i=0}^{\infty} \,C_i(x-y)\,\widehat{O}_i\left(\frac{x+y}{2}\right)$$

- local operators \hat{O}_i are regular for every i=0,1,2...
- divergence for $x \to y$ is reabsorbed in coefficients C_i
- terms are ordered by decreasing singularity in C_i , i=0,1,2...
- usually $\hat{O}_0 = I$, but explicit expression of the expansion must be separately determined for each different process
- OPE is also an operational definition because it can be used to define a regular composite operator.

Example : theory ϕ^4 ; the operator $\phi(x)^2$ can be defined as

$$\phi(x)^2 \equiv \lim_{x \to y} \frac{\phi(x) \phi(y) - C_0(x - y)}{C_1(x - y)} = \hat{O}_1(x)$$

the Wick theorem

scalar field
$$\phi(x) = \phi^+(x) + \phi^-(x) = \int \frac{d\mathbf{p}}{(2\pi)^3 2p^0} \left[a_p e^{-ip \cdot x} + a_p^{\dagger} e^{ip \cdot x} \right]$$

"normal" order : : = move a^{\dagger} to left, a to right \rightarrow annihilate on $|0\rangle$ "time" order T = order fields by increasing times towards left

7

analogously non interacting fermion fields $\mathcal{T}\left|\psi(x)\bar{\psi}(y)\right| = :\psi(x)\bar{\psi}(y): +\langle 0|\mathcal{T}\left|\psi(x)\bar{\psi}(y)\right||0\rangle$ $\phi_{i}^{^{+}\phi}\phi_{j} \equiv \langle 0|\mathcal{T}\left[\phi(x_{i})\phi(x_{j})\right]|0\rangle$ general formula of Wick theorem: $\mathcal{T}[\phi_1\phi_2...\phi_n] = : \phi_1\phi_2...\phi_n :$ + $\sum_{i=1}^{n} P_{ii} : \phi_1 ... \phi_{i-1} \phi_{i+1} ... \phi_{j-1} \phi_{j+1} ... \phi_n : \phi_i \phi_j$ $i \neq i = 1$ + $\sum : \phi_1 ... \phi_{i-1} \phi_{i+1} ... \phi_{j-1} \phi_{j+1} ... \phi_{k-1} \phi_{k+1} ... \phi_{l-1} \phi_{l+1} ... \phi_n :$ $i \neq i \neq k \neq l = 1$ $\left(P_{ijkl} \quad \phi_i \phi_j \phi_k \phi_l + P_{ikjl} \quad \phi_i \phi_k \phi_j \phi_l + P_{iljk} \quad \phi_i \phi_l \phi_j \phi_k\right)$

$$P_{ij} = (-1)^m$$

m= n⁰ of permutations to reset indices in
natural order 1, ..., i-1, i, ..., j-1, j, ..., n

 $+\ldots$

application to inclusive e⁺e⁻ and DIS

 $W^{\mu\nu} \Rightarrow J^{\mu}(\xi) J^{\nu}(0)$ with J^{μ} e.m. current of quark normal product :: useful to define a composite operator for $\xi \to 0$ \Rightarrow study $\mathcal{T}'[J^{\mu}(\xi) J^{\nu}(0)]$ per $\xi \to 0$ with Wick theorem

 $\mathcal{T}\left[J^{\mu}(\xi)J^{\nu}(0)\right] =$

 $: \bar{\psi}(\xi)\gamma^{\mu}\psi(\xi) \ \bar{\psi}(0)\gamma^{\nu}\psi(0): + : \bar{\psi}(\xi)\gamma^{\mu}\gamma^{\nu}\psi(0): \psi(\xi)\overline{\psi}(0) +$ $: \bar{\psi}(0)\gamma^{\nu}\gamma^{\mu}\psi(\xi): \psi(0)\overline{\psi}(\xi) - \operatorname{Tr}[\gamma^{\mu}\gamma^{\nu}] \ \psi(\xi)\overline{\psi}(0) \ \psi(0)\overline{\psi}(\xi)$

 $= \operatorname{Tr} \left[\gamma^{\mu} \gamma^{\nu}\right] S_{F}(-\xi) S_{F}(\xi) - : \overline{\psi}(\xi) \gamma^{\mu} \gamma^{\nu} \psi(0) : i S_{F}(\xi) \\ - : \overline{\psi}(0) \gamma^{\nu} \gamma^{\mu} \psi(\xi) : i S_{F}(-\xi) + : \overline{\psi}(\xi) \gamma^{\mu} \psi(\xi) \overline{\psi}(0) \gamma^{\nu} \psi(0) :$

$$\psi(\xi) \overline{\psi}(0) = \langle 0 | \mathcal{T} \left[\psi(\xi) \overline{\psi}(0) \right] | 0 \rangle = -i S_F(\xi) = i \int \frac{d^4 p}{(2\pi)^4} \frac{e^{-ip \cdot \xi}}{p - m + i\epsilon}$$

divergent for $\xi \to 0 \Rightarrow OPE$

10-Apr-13

-7

singularities of free fermion propagator

$$\begin{split} S_F(\xi) &= (i \not \! \theta + m) \, \Delta(\xi) \\ \Delta(\xi) &= -\lim_{\epsilon \to 0} \int \frac{d^4 p}{(2\pi)^4} \frac{e^{-ip \cdot \xi}}{p^2 - m^2 + i\epsilon} = i \frac{m}{4\pi^2} \lim_{\epsilon \to 0} \frac{K_1 \left(m \sqrt{-\xi^2 + i\epsilon} \right)}{\sqrt{-\xi^2 + i\epsilon}} + \frac{1}{4\pi} \, \delta(\xi^2) \\ &\stackrel{\xi \to 0}{\sim} \frac{im}{4\pi^2} \lim_{\epsilon \to 0} \frac{1}{m \sqrt{-\xi^2 + i\epsilon}} \frac{1}{\sqrt{-\xi^2 + i\epsilon}} + \text{termini meno singolari} \\ &= \frac{1}{4\pi^2 i} \lim_{\epsilon \to 0} \frac{1}{\xi^2 - i\epsilon} + \text{termini meno singolari} \\ &\stackrel{\checkmark}{\text{light-cone singularity}} \\ \text{degree of singularity proportional to powers of q in Fourier transform} \\ &\int_{-\infty}^{\infty} dx \, \frac{e^{iq \cdot x}}{(x - i\epsilon)^{\alpha}} = \frac{2\pi e^{i\alpha\pi/2}}{\Gamma(\alpha)} \, \theta(q) \, q^{\alpha - 1} \\ &\stackrel{\qquad}{\text{oPE coefficients}} \\ &\stackrel{\checkmark}{\text{dominant contribution to J^{\mu} in W^{\mu\nu}}} \end{split}$$

10-Apr-13

$$\begin{split} S_F(\xi) &= (i\gamma \cdot \partial + m) \,\Delta(\xi) \sim (i\gamma \cdot \partial + m) \frac{1}{4\pi^2 i} \frac{1}{\xi^2 - i\epsilon} + \dots \\ &= \frac{-2\gamma \cdot \xi}{(\xi^2 - i\epsilon)^2} \frac{i}{4\pi^2 i} + \frac{1}{4\pi^2 i} \frac{m}{\xi^2 - i\epsilon} + \text{termini meno singolari} \\ \hline \\ \textbf{most singular term in } \mathcal{T}'[\mathsf{J}^{\mu}(\xi) \,\mathsf{J}^{\nu}(0)] \\ & \mathsf{Tr} \left[S_F(-\xi) \gamma^{\mu} S_F(\xi) \gamma^{\nu} \right] \sim -\frac{4}{16\pi^4 (\xi^2 - i\epsilon)^4} \,\mathsf{Tr} \left[\frac{\xi}{\gamma^{\mu}} \frac{\xi}{\gamma^{\nu}} \right] + \dots \\ &= \frac{\xi^2 g^{\mu\nu} - 2\xi^{\mu}\xi^{\nu}}{\pi^4 (\xi^2 - i\epsilon)^4} + \dots \end{split}$$

less singular term in $\mathcal{T}'[J^{\mu}(\xi) J^{\nu}(0)]$

: $\bar{\psi}(\xi)\gamma^{\mu}\psi(\xi)\,\bar{\psi}(0)\gamma^{\nu}\psi(0)$: = $\hat{O}(\xi,0)$ regular bilocal operator