helicity distribution and measurement of N spin

in general, $g_{1}\left(x_{B}, Q^{2}\right)$: dependence on Q^{2} (= scaling violations) calculable in perturbative QCD
interest in $\mathrm{g}_{1}\left(\mathrm{x}_{\mathrm{B}}, \mathrm{Q}^{2}\right)$ is due to its 1° Mellin moment
\rightarrow information on quark helicity; it is calculable on lattice
1° Mellin moment of g_{1}

$$
\begin{gathered}
\Gamma_{1}\left(Q^{2}\right)=\int_{0}^{1} d x g_{1}\left(x, Q^{2}\right)=\frac{1}{2} \sum_{f, \bar{f}} e_{f}^{2} \int_{0}^{1} d x\left(q_{f}^{\uparrow}\left(x, Q^{2}\right)-q_{f}^{\downarrow}\left(x, Q^{2}\right)\right)=\frac{1}{2} \sum_{f \bar{f}} e_{f}^{2} \Delta q_{f} \\
\Delta q_{f}=\int_{0}^{1} d x\left(q_{f}^{\uparrow}\left(x, Q^{2}\right)-q_{f}^{\downarrow}\left(x, Q^{2}\right)\right) \\
\text { exp. } \rightarrow \mathrm{A}_{1}\left(\mathrm{~A}_{2} \sim 0\right) \rightarrow \mathrm{g}_{1}\left(\mathrm{x}_{\mathrm{B}}, \mathrm{Q}^{2}\right) \rightarrow \Gamma_{1}\left(\mathrm{Q}^{2}\right) \rightarrow \Delta \mathrm{q}_{\mathrm{f}} \\
1 \text { relation for } \mathrm{f} \geq 3 \text { unknowns }!
\end{gathered}
$$

(cont'ed)

in QPM for proton : $\quad \Gamma_{1}^{p}=\frac{1}{2}\left(\frac{4}{9} \Delta u+\frac{1}{9} \Delta d+\frac{1}{9} \Delta s\right)$
QPM : wave function of q in P^{\uparrow} "induced" by $\mathrm{SU}_{\mathrm{f}}(3) \otimes \mathrm{SU}(2)$

$$
\left|P^{\uparrow}\right\rangle \approx \frac{1}{\sqrt{6}}\left(2 u^{\uparrow} u^{\uparrow} d^{\downarrow}-u^{\uparrow} u^{\downarrow} d^{\uparrow}-u^{\downarrow} u^{\uparrow} d^{\uparrow}\right) \rightarrow \begin{gathered}
\Gamma_{1} \mathrm{p}=5 / 18 \sim 0.28 \\
\Delta \Sigma=1
\end{gathered}
$$

3 unknowns \rightarrow info from axial current $A_{\mu}{ }^{a} \sim \gamma_{\mu} \gamma_{5}{ }^{T a}$ in semi-leptonic decays (ex. β decay) in baryonic octet Result:

$$
\begin{aligned}
\Gamma_{1}^{p} & =\int_{0}^{1} d x g_{1}^{p}(x) \sim \frac{1}{12}\left\langle A_{\mu}^{3}\right\rangle\left[1+\frac{5}{3} \frac{\left\langle A_{\mu}^{8}\right\rangle}{\left\langle A_{\mu}^{3}\right\rangle}\right]=\frac{1}{12}\left|\frac{g_{A}}{g_{V}}\right|_{n p}\left[1+\frac{5}{3} \frac{3 F-D}{F+D}\right] \\
& =0.17 \pm 0.01 \\
\Delta \Sigma & =3 F-D=0.60 \pm 0.12
\end{aligned}
$$

from a fit to semi-leptonic decays $\rightarrow \mathrm{F}=0.47 \pm 0.004 ; \mathrm{D}=0.81 \pm 0.003$
Ellis-Jaffe sum rule (' 73)
(hp.= perfect symmetry $\mathrm{SU}_{\mathrm{f}}(3)+\Delta \mathrm{s}=0$)
complicated corrections

Experiment EMC (CERN, ' 87)

$$
\begin{aligned}
& \mu^{\uparrow \mathbf{p}^{\uparrow} \rightarrow \mu \mathrm{p} \text { at } \mathrm{Q}^{2}=10.7 \mathrm{GeV}^{2}}
\end{aligned}
$$

confirmed also from:
SMC (Cern),
E142 and E143 (SLAC)

Spin crisis

$$
\mathrm{F}+\mathrm{D}+\Gamma_{1}{ }^{\mathrm{p}}\left(\mathrm{Q}^{2}\right) \rightarrow \Delta \Sigma \text { and } \Delta \mathrm{u}, \Delta \mathrm{~d}, \Delta \mathrm{~s}
$$

QPM
Ellis - Jaffe sum rule

$$
S U_{f}(3)+\Delta s=0
$$

exp.

$$
\Gamma_{1}{ }^{p} \sim 0.28
$$

$$
\Gamma_{1}{ }^{p}=0.17 \pm 0.01 \quad \Gamma_{1}{ }^{p}=0.126 \pm 0.010 \pm 0.015
$$

$$
\Delta \Sigma=1
$$

$$
\Delta \Sigma=0.60 \pm 0.12 \quad \Delta \Sigma=0.13 \pm 0.19
$$

$$
\mathrm{Q}^{2}=3 \mathrm{GeV}^{2}
$$

$$
\text { discrepancy } \longrightarrow \Delta \Sigma=0.27 \pm 0.04
$$

$$
>2 \sigma
$$

Violation of $\mathrm{SU}_{\mathrm{f}}(3)$?
extrapolating $\mathrm{g}_{1}(\mathrm{x})$ for $\mathrm{x} \rightarrow 0$?
axial anomaly $\quad \partial^{\mu} A_{\mu}^{0}=\frac{n_{f} \alpha_{s}}{2 \pi} \epsilon^{\mu \nu \rho \sigma} F_{\mu \nu} F_{\rho \sigma}$
\rightarrow gluon contribution?

$$
\Delta q=\Delta q^{\prime}-\frac{\alpha_{s}}{2 \pi} \Delta g
$$

polarized Bjorken sum rule
$\int_{0}^{1} d x\left[g_{1}^{p}(x)-g_{1}^{n}(x)\right]=\frac{1}{6} \frac{G_{A}}{G_{V_{k}}}\left(1-\frac{\alpha_{s}\left(Q^{2}\right)}{\pi}+\ldots\right)$ pQCD corrections
QPM: wave function of q in P according to $\mathrm{SU}_{\mathrm{f}}(3) \otimes \mathrm{SU}(2)$

$$
\begin{aligned}
A_{1}^{p}=\frac{\sum_{f} e_{f}^{2}\left(q_{f}^{\uparrow}-q_{f}^{\downarrow}\right)}{\sum_{f} e_{f}^{2}\left(q_{f}^{\uparrow}+q_{f}^{\downarrow}\right)} & \int_{0}^{1} d x\left(g_{1}^{p}-g_{1}^{n}\right) \\
A_{1}^{n}=\text { stesso } \operatorname{con} u \leftrightarrow d=0 & =\int_{0}^{1} d x\left(A_{1}^{p} F_{1}^{p}-A_{1}^{n} F_{1}^{n}\right)=\frac{5}{18}
\end{aligned}
$$

$$
\leadsto \frac{\frac{G_{A}}{G_{V}} \stackrel{\text { QPM }}{=} \frac{5}{3} \leftrightarrow 1.6667 \pm 0.003}{\text { exp. }} 1.267 \pm 0.004
$$

Sum rule :
10-Apr-13

QPM	+ pQCD	exp.
0.27778	0.191 ± 0.002	0.209 ± 0.003

inclusive $\mathrm{e}^{+} \mathrm{e}^{-}$annihilations

$$
q=k+k^{\prime} \quad \text { time-like } \quad q^{2} \equiv Q^{2}=s \geq 0
$$

$$
d \sigma=\frac{1}{\mathcal{F}}|\mathcal{M}|^{2} d R
$$

$$
\mathcal{F}=4 \sqrt{\left(k \cdot k^{\prime}\right)^{2}-k^{2} k^{\prime 2}} \stackrel{\operatorname{TRF}}{=} 2 Q^{2} \equiv 2 s
$$

$$
\begin{aligned}
& \mathcal{M}=\bar{v}\left(k^{\prime}\right) \gamma_{\mu} u(k) \frac{e^{2}}{Q^{2}}\left\langle P_{X}\right| J^{\mu}(0)|0\rangle \quad d R=(2 \pi)^{4} \delta\left(k+k^{\prime}-P_{X}\right) \frac{d \mathbf{P}_{X}}{(2 \pi)^{3} 2 P_{X}^{0}} \\
& |\mathcal{M}|^{2}=\frac{e^{4}}{Q^{4}} L_{\mu \nu} H^{\mu \nu}=2\left(k_{\mu} k_{\nu}^{\prime}+k_{\mu}^{\prime} k_{\nu}-k \cdot k^{\prime} g_{\mu \nu}\right) \\
& \sigma=\frac{1}{2} \frac{1}{2 Q^{2}} \frac{e^{4}}{Q^{4}} L_{\mu \nu} \int \frac{d \mathbb{P}_{X}}{(2 \pi)^{3} 2 P_{X}^{0}}(2 \pi)^{4} \delta\left(q-P_{X}\right) H^{\mu \nu}=\frac{4 \pi^{2} \alpha^{2}}{Q^{6}} L_{\mu \nu} W^{\mu \nu} \\
& \text { average on initial polarizations }
\end{aligned}
$$

QPM picture

no hadrons in initial and final states
σ in QPM \equiv elementary $\sigma e^{+} e^{-} \rightarrow q \bar{q}$ creating a pair
by conserving color in vertex
$Q^{2}=s$ such that only γ are produced

$$
\sigma\left(e^{+} e^{-} \rightarrow q \bar{q}\right) \equiv \sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)
$$

$$
\sigma\left(e^{+} e^{-} \rightarrow X\right)=N_{c} \sum_{f} e_{f}^{2} \sigma\left(e^{+} e^{-} \rightarrow q \bar{q}\right)
$$

$$
=N_{c} \sum_{f} e_{f}^{2} \int d \Omega \frac{d \sigma}{d \Omega}\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)
$$

10-Apr-13

$$
=N_{c} \sum_{f} e_{f}^{2} \int d \Omega \frac{\alpha^{2}}{4 Q^{2}}\left(1+\cos ^{2} \theta\right)=N_{c} \sum_{f} e_{f}^{2} \frac{4 \pi \alpha^{2}}{3 Q^{2}}
$$

$$
Q^{2} \sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow X\right) \text { scales ! }
$$

hence

$$
R=\frac{\sigma\left(e^{+} e^{-} \rightarrow \text { hadrons }\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)}=N_{c} \sum_{f} e_{f}^{2}
$$

evidence of N_{c} test of gauge structures SU_{c} (3) and $\mathrm{SU}_{\mathrm{f}}(3)$
below c threshold

$$
R=3(4 / 9+2 / 9)=2
$$

around threshold
resonances $\mathrm{J} / \psi, \psi$ ' above c threshold

$$
R=2+34 / 9=3+1 / 3
$$

see also
Wu, Phys.Rep. C107 59 (84)

inclusive $\mathrm{e}^{+} \mathrm{e}^{-}$annihilations

(factorization) theorem :
total cross section is finite in the limit of massless particles, i.e. it is free from "infrared" (IR) divergences
(Sterman, ' 76, ' 78)
[generalization of theorem KLN (Kinoshita-Lee-Nauenberg)]

$$
\sigma_{t o t}=N_{c} \frac{4 \pi \alpha^{2}}{3 Q^{2}} \sum_{f} e_{f}^{2} \sum_{n} s_{n} \alpha_{s}^{n}\left(Q^{2}\right)
$$

pQCD corrections

inclusive $\mathrm{e}^{+} \mathrm{e}^{-}$

$$
\begin{aligned}
W^{\mu \nu} & =\int \frac{d \mathbf{P}_{X}}{(2 \pi)^{3} 2 P_{X}^{0}}(2 \pi)^{4} \delta\left(q-P_{X}\right) \\
& \langle 0| J^{\mu}(0)\left|P_{X}\right\rangle\left\langle P_{X}\right| J^{\nu}(0)|0\rangle \\
& =\int d^{4} \xi e^{i q \cdot \xi}\langle 0|\left[J^{\mu}(\xi), J^{\nu}(0)\right]|0\rangle
\end{aligned}
$$

theorem: dominant contribution in Bjorken limit comes from short distances $\xi \rightarrow 0$ (on the light-cone)
but product of operators in the same space-time point is not always well defined in field theory !

Example: free neutral scalar field $\phi(x)$; free propagator $\Delta(x-y)$

$$
\begin{aligned}
\langle 0| \mathcal{T}[\phi(x) \phi(y)]|0\rangle & =-i \Delta(x-y)=i \int \frac{d^{4} p}{(2 \pi)^{4}} \frac{e^{-i p \cdot(x-y)}}{p^{2}-m^{2}+i \epsilon} \\
& =\frac{m}{4 \pi^{2}} \frac{K_{1}\left(m \sqrt{-(x-y)^{2}+i \epsilon}\right)}{\sqrt{-(x-y)^{2}+i \epsilon}}-\frac{i}{4 \pi} \delta\left((x-y)^{2}\right) \xrightarrow{x \rightarrow y} \infty
\end{aligned}
$$

K_{1} modified Bessel funct. of $2^{\text {nd }}$ kind
Example: interacting neutral scalar field $\phi(x)$

$$
\begin{array}{rlc}
\langle 0| \phi(x)^{2}|0\rangle & =\int \frac{d \mathbf{p}}{(2 \pi)^{3} 2 p^{0}} \sum_{n}\langle 0| \phi(0)|p, n\rangle\langle p, n| \phi(0)|0\rangle \quad \hat{P}|p, n\rangle=p|p, n\rangle \\
& \left.\geq \int \frac{d \mathbf{p}}{(2 \pi)^{3} 2 p^{0}}|\langle 0| \phi(0)| p, 1\right\rangle\left.\right|^{2} \equiv N \int \frac{d \mathbf{p}}{(2 \pi)^{3} 2 p^{0}} \rightarrow \infty
\end{array}
$$

$$
\text { depends only on } \mathrm{p}^{2}=\mathrm{m}^{2} \rightarrow \text { it is a constant } N
$$

Operator Product Expansion

(Wilson, ' 69 first hypothesis; Zimmermann, ' 73 proof in perturbation theory; Collins, ' 84 diagrammatic proof)
(operational) definition of composite operator:

$$
\widehat{A}(x) \widehat{B}(y) \equiv \sum_{i=0}^{\infty} C_{i}(x-y) \widehat{O}_{i}\left(\frac{x+y}{2}\right)
$$

- local operators \hat{O}_{i} are regular for every $i=0,1,2 \ldots$
- divergence for $\mathrm{x} \rightarrow \mathrm{y}$ is reabsorbed in coefficients C_{i}
- terms are ordered by decreasing singularity in $C_{i}, i=0,1,2 \ldots$
- usually $\hat{O}_{0}=\mathrm{I}$, but explicit expression of the expansion must be separately determined for each different process
- OPE is also an operational definition because it can be used to define a regular composite operator.
Example : theory ϕ^{4}; the operator $\phi(x)^{2}$ can be defined as

$$
\phi(x)^{2} \equiv \lim _{x \rightarrow y} \frac{\phi(x) \phi(y)-C_{0}(x-y)}{C_{1}(x-y)}=\widehat{O}_{1}(x)
$$

the Wick theorem

scalar field

$$
\phi(x)=\phi^{+}(x)+\phi^{-}(x)=\int \frac{d \mathbf{p}}{(2 \pi)^{3} 2 p^{0}}\left[a_{p} e^{-i p \cdot x}+a_{p}^{\dagger} e^{i p \cdot x}\right]
$$

"normal" order : : = move a^{\dagger} to left, a to right \rightarrow annihilate on |0> "time" order T = order fields by increasing times towards left

Step $1 \mathcal{T} \phi(x)=: \phi(x):$
Step $2\left[\mathcal{T} \phi\left(x_{1}\right)\right] \phi\left(x_{2}\right)=\mathcal{T}\left[\phi\left(x_{1}\right) \phi\left(x_{2}\right)\right]=: \phi\left(x_{1}\right): \phi\left(x_{2}\right)$
$\mathrm{t}_{2}<\mathrm{t}_{1}=\phi\left(x_{1}\right) \phi^{+}\left(x_{2}\right)+\phi\left(x_{1}\right) \phi^{-}\left(x_{2}\right)=\phi\left(x_{1}\right) \phi^{+}\left(x_{2}\right)+\phi^{-}\left(x_{1}\right) \phi^{-}\left(x_{2}\right)$
analogously for $\mathrm{t}_{2}>\mathrm{t}_{1}$

$$
+\phi^{+}\left(x_{1}\right) \phi^{-}\left(x_{2}\right)
$$

hence

$$
+\phi^{-}\left(x_{2}\right) \phi^{+}\left(x_{1}\right)+\left[\phi^{+}\left(x_{1}\right), \phi^{-}\left(x_{2}\right)\right]
$$

$$
\begin{aligned}
& \mathcal{T}[\phi(x) \phi(y)]=: \phi(x) \phi(y):+\langle 0| \mathcal{T}[\phi(x) \phi(y)]|0\rangle=\langle 0|\left[\phi^{+}\left(x_{1}\right), \phi^{-}\left(x_{2}\right)\right]|0\rangle \\
& \begin{array}{l}
=\langle 0|\left[\phi^{+}\left(x_{1}\right), \phi^{-}\left(x_{2}\right)\right]|0\rangle \\
=\langle 0| \mathcal{T}\left[\phi\left(x_{1}\right) \phi\left(x_{2}\right)\right]|0\rangle
\end{array} \\
& \lim _{x \rightarrow y} \\
& \lim _{x \rightarrow y} \\
& =1 \cdot \widehat{O}_{1}(x)+C_{0}(x-y) \cdot \mathbb{I} \\
& \text { recursive }
\end{aligned}
$$

analogously non interacting fermion fields

$$
\mathcal{T}[\psi(x) \bar{\psi}(y)]=: \psi(x) \bar{\psi}(y):+\langle 0| \mathcal{T}[\psi(x) \bar{\psi}(y)]|0\rangle
$$

general formula of Wick theorem:

$$
\phi_{i}{ }^{\sqcap} \phi_{j} \equiv\langle 0| \mathcal{T}\left[\phi\left(x_{i}\right) \phi\left(x_{j}\right)\right]|0\rangle
$$

$$
\mathcal{T}\left[\phi_{1} \phi_{2} \ldots \phi_{n}\right]=: \phi_{1} \phi_{2} \ldots \phi_{n}:
$$

$$
+\sum_{i \neq j=1}^{n} P_{i j}: \phi_{1} \ldots \phi_{i-1} \phi_{i+1} \ldots \phi_{j-1} \phi_{j+1} \ldots \phi_{n}: \stackrel{\sqcap}{\phi_{i}} \phi_{j}
$$

$$
+\sum_{i \neq j \neq k \neq l=1}^{n}: \phi_{1} \ldots \phi_{i-1} \phi_{i+1} \ldots \phi_{j-1} \phi_{j+1} \ldots \phi_{k-1} \phi_{k+1} \ldots \phi_{l-1} \phi_{l+1} \ldots \phi_{n}:
$$

$$
\left(P_{i j k l} \stackrel{\sqcap}{\phi_{i} \phi_{j} \phi_{k} \phi_{l}}+P_{i k j l} \stackrel{\sqcap}{\phi_{i} \phi_{k}} \phi_{j} \phi_{l}+P_{i l j k} \stackrel{\sqcap}{\phi_{i} \phi_{l} \phi_{j} \phi_{k}}\right)
$$

$+\ldots$.

$$
\begin{aligned}
& P_{i j}=(-1)^{m} \\
& m=n^{0} \text { of permutations to reset indices in } \\
& \text { natural order } 1, \ldots, i-1, i, \ldots, j-1, j, \ldots, n
\end{aligned}
$$

application to inclusive $\mathrm{e}^{+} \mathrm{e}^{-}$and DIS

$W^{u v} \Rightarrow J^{\mu}(\xi) J^{\nu}(0)$ with J^{μ} e.m. current of quark normal product : : useful to define a composite operator for $\xi \rightarrow 0$
\Rightarrow study $\mathcal{T}^{\prime}\left[J^{\mu}(\xi) \mathrm{J}^{\nu}(0)\right]$ per $\xi \rightarrow 0$ with Wick theorem
$\mathcal{T}\left[J^{\mu}(\xi) J^{\nu}(0)\right]=$
$: \bar{\psi}(\xi) \gamma^{\mu} \psi(\xi) \bar{\psi}(0) \gamma^{\nu} \psi(0):+: \bar{\psi}(\xi) \gamma^{\mu} \gamma^{\nu} \psi(0): \psi(\xi) \bar{\psi}(0)+$
$: \bar{\psi}(0) \gamma^{\nu} \gamma^{\mu} \psi(\xi): \psi(0) \bar{\psi}(\xi)-\operatorname{Tr}\left[\gamma^{\mu} \gamma^{\nu}\right] \psi(\xi) \bar{\psi}(0) \psi(0) \bar{\psi}(\xi)$
$=\operatorname{Tr}\left[\gamma^{\mu} \gamma^{\nu}\right] S_{F}(-\xi) S_{F}(\xi)-: \bar{\psi}(\xi) \gamma^{\mu} \gamma^{\nu} \psi(0): i S_{F}(\xi)$
$-: \bar{\psi}(0) \gamma^{\nu} \gamma^{\mu} \psi(\xi): i S_{F}(-\xi)+: \bar{\psi}(\xi) \gamma^{\mu} \psi(\xi) \bar{\psi}(0) \gamma^{\nu} \psi(0):$
$\psi(\xi) \stackrel{\square}{\psi}(0)=\langle 0| \mathcal{T}[\psi(\xi) \bar{\psi}(0)]|0\rangle=-i S_{F}(\xi)=i \int \frac{d^{4} p}{(2 \pi)^{4}} \frac{e^{-i p \cdot \xi}}{p-m+i \epsilon}$

$$
\text { divergent for } \xi \rightarrow 0 \Rightarrow \text { OPE }
$$

singularities of free fermion propagator

$$
\begin{aligned}
S_{F}(\xi) & =(i \not \partial+m) \Delta(\xi) \\
\Delta(\xi) & =-\lim _{\epsilon \rightarrow 0} \int \frac{d^{4} p}{(2 \pi)^{4}} \frac{e^{-i p \cdot \xi}}{p^{2}-m^{2}+i \epsilon}=i \frac{m}{4 \pi^{2}} \lim _{\epsilon \rightarrow 0} \frac{K_{1}\left(m \sqrt{-\xi^{2}+i \epsilon}\right)}{\sqrt{-\xi^{2}+i \epsilon}}+\frac{1}{4 \pi} \delta\left(\xi^{2}\right) \\
& \stackrel{\sim}{\sim} 0 \frac{i m}{4 \pi^{2}} \lim _{\epsilon \rightarrow 0} \frac{1}{m \sqrt{-\xi^{2}+i \epsilon}} \frac{1}{\sqrt{-\xi^{2}+i \epsilon}}+\text { termini meno singolari } \\
& =\frac{1}{4 \pi^{2} i} \lim _{\epsilon \rightarrow 0} \frac{1}{\xi^{2}-i \epsilon}+\text { termini meno singolari }
\end{aligned}
$$

light-cone singularity
degree of singularity proportional to powers of q in Fourier transform

$$
\int_{-\infty}^{\infty} d x \frac{e^{i q \cdot x}}{(x-i \epsilon)^{\alpha}}=\frac{2 \pi e^{i \alpha \pi / 2}}{\Gamma(\alpha)} \theta(q) q^{\alpha-1}
$$

highest singularity in OPE coefficients

dominant contribution to J^{μ} in $W^{\mu \nu}$
(cont'ed)

$$
\begin{aligned}
& S_{F}(\xi)=(i \gamma \cdot \partial+m) \Delta(\xi) \sim(i \gamma \cdot \partial+m) \frac{1}{4 \pi^{2} i} \frac{1}{\xi^{2}-i \epsilon}+\ldots \\
& \quad=\frac{-2 \gamma \cdot \xi}{\left(\xi^{2}-i \epsilon\right)^{2}} \frac{i}{4 \pi^{2} i}+\frac{1}{4 \pi^{2} i} \frac{m}{\xi^{2}-i \epsilon}+\text { termini meno singolari }
\end{aligned}
$$

most singular term in $\mathcal{T}^{\prime}\left[J^{J}(\xi) J^{v}(0)\right]$
$\operatorname{Tr}\left[S_{F}(-\xi) \gamma^{\mu} S_{F}(\xi) \gamma^{\nu}\right] \sim-\frac{4}{16 \pi^{4}\left(\xi^{2}-i \epsilon\right)^{4}} \operatorname{Tr}\left[\phi \gamma^{\mu} \phi \gamma^{\nu}\right]+\ldots$.

$$
=\frac{\xi^{2} g^{\mu \nu}-2 \xi^{\mu} \xi^{\nu}}{\pi^{4}\left(\xi^{2}-i \epsilon\right)^{4}}+\ldots
$$

less singular term in $\mathcal{T}^{\prime}\left[J^{\mu}(\xi) J^{v}(0)\right]$
$: \bar{\psi}(\xi) \gamma^{\mu} \psi(\xi) \bar{\psi}(0) \gamma^{\nu} \psi(0):=\widehat{O}(\xi, 0)$
regular bilocal operator

