application to inclusive $\mathrm{e}^{+} \mathrm{e}^{-}$and DIS

$W^{u v} \Rightarrow J^{\mu}(\xi) J^{\nu}(0)$ with J^{μ} e.m. current of quark normal product : : useful to define a composite operator for $\xi \rightarrow 0$
\Rightarrow study $\mathcal{T}^{\prime}\left[J^{\mu}(\xi) \mathrm{J}^{\nu}(0)\right]$ per $\xi \rightarrow 0$ with Wick theorem
$\mathcal{T}\left[J^{\mu}(\xi) J^{\nu}(0)\right]=$
$: \bar{\psi}(\xi) \gamma^{\mu} \psi(\xi) \bar{\psi}(0) \gamma^{\nu} \psi(0):+: \bar{\psi}(\xi) \gamma^{\mu} \gamma^{\nu} \psi(0): \psi(\xi) \bar{\psi}(0)+$
$: \bar{\psi}(0) \gamma^{\nu} \gamma^{\mu} \psi(\xi): \psi(0) \bar{\psi}(\xi)-\operatorname{Tr}\left[\gamma^{\mu} \gamma^{\nu}\right] \psi(\xi) \bar{\psi}(0) \psi(0) \bar{\psi}(\xi)$
$=\operatorname{Tr}\left[\gamma^{\mu} \gamma^{\nu}\right] S_{F}(-\xi) S_{F}(\xi)-: \bar{\psi}(\xi) \gamma^{\mu} \gamma^{\nu} \psi(0): i S_{F}(\xi)$
$-: \bar{\psi}(0) \gamma^{\nu} \gamma^{\mu} \psi(\xi): i S_{F}(-\xi)+: \bar{\psi}(\xi) \gamma^{\mu} \psi(\xi) \bar{\psi}(0) \gamma^{\nu} \psi(0):$
$\psi(\xi) \stackrel{\square}{\psi}(0)=\langle 0| \mathcal{T}[\psi(\xi) \bar{\psi}(0)]|0\rangle=-i S_{F}(\xi)=i \int \frac{d^{4} p}{(2 \pi)^{4}} \frac{e^{-i p \cdot \xi}}{p-m+i \epsilon}$

$$
\text { divergent for } \xi \rightarrow 0 \Rightarrow \text { OPE }
$$

(cont'ed)

$$
\begin{aligned}
& S_{F}(\xi)=(i \gamma \cdot \partial+m) \Delta(\xi) \sim(i \gamma \cdot \partial+m) \frac{1}{4 \pi^{2} i} \frac{1}{\xi^{2}-i \epsilon}+\ldots \\
& \quad=\frac{-2 \gamma \cdot \xi}{\left(\xi^{2}-i \epsilon\right)^{2}} \frac{i}{4 \pi^{2} i}+\frac{1}{4 \pi^{2} i} \frac{m}{\xi^{2}-i \epsilon}+\text { termini meno singolari }
\end{aligned}
$$

most singular term in $\mathcal{T}^{\prime}\left[J^{J}(\xi) J^{v}(0)\right]$
$\operatorname{Tr}\left[S_{F}(-\xi) \gamma^{\mu} S_{F}(\xi) \gamma^{\nu}\right] \sim-\frac{4}{16 \pi^{4}\left(\xi^{2}-i \epsilon\right)^{4}} \operatorname{Tr}\left[\not \gamma^{\mu} \phi \gamma^{\nu}\right]+\ldots$.

$$
=\frac{\xi^{2} g^{\mu \nu}-2 \xi^{\mu} \xi^{\nu}}{\pi^{4}\left(\xi^{2}-i \epsilon\right)^{4}}+\ldots
$$

less singular term in $\mathcal{T}^{\prime}\left[J^{\mu}(\xi) J^{\nu}(0)\right]$
$: \bar{\psi}(\xi) \gamma^{\mu} \psi(\xi) \bar{\psi}(0) \gamma^{\nu} \psi(0):=\widehat{O}(\xi, 0)$
regular bilocal operator

$$
\begin{aligned}
& -: \bar{\psi}(\xi) \gamma_{\mu} i S_{F}(\xi) \gamma_{\nu} \psi(0):-: \bar{\psi}(0) \gamma^{\nu} i S_{F}(-\xi) \gamma_{\mu} \psi(\xi): \\
& \sim \frac{i \xi^{\lambda}}{2 \pi^{2}\left(\xi^{2}-i \epsilon\right)^{2}}: \bar{\psi}(\xi) \gamma_{\mu} \gamma_{\lambda} \gamma_{\nu} \psi(0)-\bar{\psi}(0) \gamma_{\nu} \gamma_{\lambda} \gamma_{\mu} \psi(\xi):+\ldots \\
& =\frac{i \xi^{\lambda}}{2 \pi^{2}\left(\xi^{2}-i \epsilon\right)^{2}}\left(\sigma_{\mu \lambda \nu \rho} \widehat{O}_{V}^{\rho}(\xi, 0)+i \epsilon_{\mu \lambda \nu \rho} \widehat{O}_{A}^{\rho}(\xi, 0)\right) \\
& \gamma_{\mu} \gamma_{\lambda} \gamma_{\nu}
\end{aligned} \begin{aligned}
& \gamma_{\nu} \gamma_{\lambda} \gamma_{\mu}=\left(\sigma_{\mu \lambda \nu \rho}+i \epsilon_{\mu \lambda \nu \rho} \gamma_{5}\right) \gamma^{\rho} \\
& \sigma_{\mu \lambda \nu \rho}\left.=g_{\mu \lambda \lambda \nu}-i \epsilon_{\mu \lambda \nu \rho} \gamma_{5}\right) \gamma^{\rho} \\
& \Rightarrow g_{\mu \rho} g_{\nu \lambda}-g_{\mu \nu} g_{\lambda \rho} \\
& \Rightarrow \widehat{O}_{V}^{\rho}(\xi, 0)=: \bar{\psi}(\xi) \gamma^{\rho} \psi(0)-\bar{\psi}(0) \gamma^{\rho} \psi(\xi): \\
& \widehat{O}_{A}^{\rho}(\xi, 0)=: \bar{\psi}(\xi) \gamma_{5} \gamma^{\rho} \psi(0)+\bar{\psi}(0) \gamma_{5} \gamma^{\rho} \psi(\xi): \\
& \text { regular bilocal operators }
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{T}\left[J_{\mu}(\xi) J_{\nu}(0)\right]= & \frac{\xi^{2} g_{\mu \nu}-2 \xi_{\mu} \xi_{\nu}}{\pi^{4}\left(\xi^{2}-i \epsilon\right)^{4}}+\frac{i \xi^{\lambda}}{2 \pi^{2}\left(\xi^{2}-i \epsilon\right)^{2}} \sigma_{\mu \lambda \nu \rho} \hat{O}_{V}^{\rho}(\xi, 0) \\
& -\frac{\xi^{\lambda}}{2 \pi^{2}\left(\xi^{2}-i \epsilon\right)^{2}} \epsilon_{\mu \lambda \nu \rho} \widehat{O}_{A}^{\rho}(\xi, 0)+\widehat{O}_{\mu \nu}(\xi, 0)
\end{aligned}
$$

- $\hat{O}_{V / A}{ }^{\mu}(\xi, 0)$ and $\hat{O}^{\mu \nu}(\xi, 0)$ are regular bilocal operators for $\xi \rightarrow 0$; bilocal \rightarrow contain info on long distance behaviour
- coefficients are singular for $\xi \rightarrow 0$ (ordered in decreasing singularity); contain info on short distance behaviour
- rigorous factorization between short and long distances at any order
- formula contains the behaviour of free quarks at short distances
\rightarrow general framework to recover QPM results
- in inclusive $\mathrm{e}^{+} \mathrm{e}^{-}$(and also DIS) hadronic tensor displays $\left[\mathrm{J}^{\mu}(\xi), \mathrm{J}^{\nu}(0)\right]$
\rightarrow manipulate above formula
(cont'ed)

$$
\begin{array}{rlrl}
\mathcal{T}\left[J^{\mu}(\xi) J^{\nu}(0)\right]-\mathcal{T}\left[J^{\mu}(\xi) J^{\nu}(0)\right]^{\dagger} & =\epsilon\left(\xi^{0}\right)\left[J^{\mu}(\xi), J^{\nu}(0)\right] \\
& \epsilon\left(x^{0}\right) & =\frac{x^{0}}{\left|x^{0}\right|} \quad J^{\mu} \text { hermitiana }
\end{array}
$$

we have $\lim _{\epsilon \rightarrow 0} \frac{1}{x^{2}-i \epsilon}=P V \frac{1}{x^{2}}+i \pi \delta\left(x^{2}\right)$

$$
\begin{aligned}
& \lim _{\epsilon \rightarrow 0} \frac{1}{\left(x^{2}-i \epsilon\right)^{n}}=P V \frac{1}{\left(x^{2}\right)^{n}}+i \pi \frac{(-1)^{n-1}}{(n-1)!} \partial^{n-1}\left(x^{2}\right) \\
& \lim _{\epsilon \rightarrow 0} \frac{1}{\left(x^{2}-i \epsilon\right)^{n}}-\frac{1}{\left(x^{2}+i \epsilon\right)^{n}}=2 \pi i \frac{(-1)^{n-1}}{(n-1)!} \partial^{n-1}\left(x^{2}\right)
\end{aligned}
$$

$$
4<\quad \text { con } \partial^{n}\left(x^{2}\right)=\frac{d^{n}}{d\left(x^{2}\right)^{n}} \delta\left(x^{2}\right)
$$

$$
\epsilon\left(\xi^{0}\right)\left[J_{\mu}(\xi), J_{\nu}(0)\right]=\frac{i\left(2 \xi_{\mu} \xi_{\nu}-\xi^{2} g_{\mu \nu}\right)}{3 \pi^{3}} \partial^{3}\left(\xi^{2}\right)+\frac{\xi^{\lambda}}{\pi} \partial\left(\xi^{2}\right) \sigma_{\mu \lambda \nu \rho} \widehat{O}_{V}^{\rho}(\xi, 0)
$$

$$
+\frac{i \xi^{\lambda}}{\pi} \partial\left(\xi^{2}\right) \epsilon_{\mu \lambda \nu \rho} \widehat{O}_{A}^{\rho}(\xi, 0)+\widehat{O}_{\mu \nu}(\xi, 0)-\widehat{O}_{\nu \mu}(0, \xi)
$$

application: inclusive $\mathrm{e}^{+} \mathrm{e}^{-}$

$$
\begin{aligned}
& \sigma_{t o t}=\frac{1}{2} \frac{e^{4}}{2 s^{3}} L^{\mu \nu} W_{\mu \nu} \\
& \\
& \int d^{4} x e^{i q \cdot x}\langle 0|\left[J_{\mu}(x), J_{\nu}(0)\right]|0\rangle \\
& \sim \int d^{4} x e^{i q \cdot x} \epsilon\left(x^{0}\right)\langle 0| \frac{i}{3 \pi^{3}}\left(2 x_{\mu} x_{\nu}-x^{2} g_{\mu \nu}\right) \partial^{3}\left(x^{2}\right)|0\rangle \\
& =\frac{d^{4} x e^{i q \cdot x} \epsilon\left(x^{0}\right) \partial^{n}\left(x^{2}\right)}{4^{n-2}(n-1)!} \\
& =\frac{i}{3 \pi^{3}}\left(q^{2}\right)^{n-1} \epsilon\left(q^{0}\right) \theta\left(q^{2}\right) \\
& =\frac{1}{6 \pi} \epsilon\left(q^{0}\right) \theta\left(q^{2}\right)\left(4 q_{\mu} q_{\nu}-q^{2} g_{\mu \nu}\right) \\
& \left.=\frac{I^{2}(\mathrm{q})}{4 \pi}-2 \frac{\partial}{\partial q^{\mu}} \frac{\partial}{\partial q^{\nu}}\right) \int d^{4} x e^{i q \cdot x} \epsilon\left(x^{0}\right) \partial^{3}\left(x^{2}\right)
\end{aligned}
$$

starting from quark current

$$
\sum_{f} e_{f}^{2} \sum_{c}: \bar{\psi}_{f}(x) \gamma^{\mu} \psi_{f}(x):
$$

$\longrightarrow \sigma_{t o t}=N_{c} \frac{4 \pi \alpha^{2}}{3 s} \sum_{f} e_{f}^{2} \quad$ QPM result !
summary: OPE for free quarks at short distances is equivalent to QPM
because QPM assumes that at short distance quarks are free fermions \rightarrow asymptotic freedom postulated in QPM is rigorously recovered in OPE

equivalent diagram :

$$
\begin{aligned}
& W_{\mu \nu}=\int d^{4} x e^{i q \cdot x}\langle 0| \frac{i}{3 \pi^{3}}\left(2 x_{\mu} x_{\nu}-x^{2} g_{\mu \nu}\right) \partial^{3}\left(x^{2}\right)|0\rangle \\
& =\int d^{4} x e^{i q \cdot x}\langle 0| \operatorname{Tr}\left[S_{F}(x) \gamma^{\mu} S_{F}(-x) \gamma^{\nu}\right]|0\rangle
\end{aligned}
$$

application: inclusive DIS

$$
\begin{aligned}
& 2 M W_{\mu \nu}=\frac{1}{2 \pi} \int d^{4} x e^{i q \cdot x}\langle P|\left[J_{\mu}(x), J_{\nu}(0)\right]|P\rangle \\
& =\frac{i}{6 \pi^{4}} \int d^{4} x e^{i q \cdot x}\left(2 x_{\mu} x_{\nu}-x^{2} g_{\mu \nu}\right) \partial^{3}\left(x^{2}\right)\langle P \mid P\rangle \\
& +\frac{1}{2 \pi^{2}} \int d^{4} x e^{i q \cdot x} x^{\lambda} \epsilon\left(x^{0}\right) \partial^{1}\left(x^{2}\right)\langle P| \sigma_{\mu \lambda \nu \rho} \widehat{O}_{V}^{\rho}(x, 0)|P\rangle \\
& +\frac{1}{2 \pi^{2}} \int d^{4} x e^{i q \cdot x} x^{\lambda} \epsilon\left(x^{0}\right) \partial^{1}\left(x^{2}\right)\langle P| i \epsilon_{\mu \lambda \nu \rho} \widehat{O}_{A}^{\rho}(x, 0)|P\rangle \\
& +\frac{1}{2 \pi} \int d^{4} x e^{i q \cdot x} \epsilon\left(x^{0}\right)\langle P| \widehat{O}_{\mu \nu}(x, 0)-\widehat{O}_{\nu \mu}(0, x)|P\rangle
\end{aligned}
$$

$$
\text { no polarization } \rightarrow \mathrm{W}_{\mathrm{S}}{ }^{\mu v}
$$

(cont'ed)

$\left[\mathrm{J}^{\mu}(\mathrm{x}), \mathrm{J}^{\mathrm{v}}(0)\right]$ dominated by kin. $\mathrm{x}^{2} \rightarrow 0 \Rightarrow$ expand $\hat{O}_{V}(\mathrm{x}, 0)$ around $\mathrm{x}=0$ regular bilocal operator \rightarrow infinite series of regular local operators

$$
\begin{aligned}
& \quad \psi(x)=\psi(0)+\left.x^{\mu} \partial_{\mu} \psi(x)\right|_{x=0}+\left.\frac{1}{2!} x^{\mu_{1}} x^{\mu_{2}} \partial_{\mu_{1}} \partial_{\mu_{2}} \psi(x)\right|_{x=0}+\ldots \\
& \hat{O}_{V}^{\rho}(x, 0)=\sum_{n=0}^{\infty} \frac{1}{n!} x^{\mu_{1} \ldots x^{\mu_{n}}}: \underbrace{\left.\left(\partial_{\mu_{1} \ldots \partial_{\mu_{n}}} \bar{\psi}(x)\right)\right|_{x=0} \gamma^{\rho} \psi(0)-\bar{\psi}(0) \gamma^{\rho}\left(\partial_{\left.\mu_{1} \ldots \partial_{\mu_{n}} \psi(x)\right)\left.\right|_{x=0}}\right.}_{\hat{O}_{V \mu_{1} \ldots \mu_{n}}^{\rho}(0)} \\
& \text { then }
\end{aligned}
$$

$\sigma_{\mu \lambda \nu \rho} \int d^{4} x e^{i q \cdot x} x^{\lambda} \ldots \sum_{n=0}^{\infty} \frac{1}{n!} x^{\mu_{1}} \ldots x^{\mu_{n}}\langle P| \widehat{O}_{V \mu_{1} \ldots \mu_{n}}^{\rho}(0)|P\rangle$
$\xrightarrow{\text { DIS }} \frac{F_{1}\left(x_{B}\right)}{M}\left(-g_{\mu \nu}+\frac{q^{\mu} q^{\nu}}{q^{2}}\right)+\frac{F_{2}\left(x_{B}\right)}{\nu} \tilde{P}^{\mu} \tilde{P}^{\nu}$
QPM result

OPE: general procedure for (non)interacting fields

$J_{\mu}(x) J_{\nu}(0)=\sum_{\{\alpha\}} C_{\mu \nu\{\alpha\}}\left(x^{2}\right) x^{\mu_{1} \ldots x^{\mu_{n \alpha}}} \widehat{O}_{\mu_{1} \ldots \mu_{n_{\alpha}}}(0)$
light-cone expansion valid for $x^{2} \sim 0$

$$
\Rightarrow C_{\{\alpha\}}\left(x^{2}\right) \sim \frac{1}{x^{6+n_{\alpha}-d}}
$$

$n_{\alpha}=$ spin of \hat{O}
$d=$ canonical dimension of \hat{O}
$W_{\mu \nu} \propto \int d^{4} x e^{i q \cdot x}\langle P|\left[J_{\mu}(x), J_{\nu}(0)\right]|P\rangle \quad \mathrm{W}_{\mu \nu}$ dimensionless $\left[d^{4} x\right]=4$

$$
\left[x^{\mu_{1}} \ldots x^{\mu_{n \alpha}}\right]=n_{\alpha}
$$

$$
\left[\left\langle P \mid P^{\prime}\right\rangle=2 E(2 \pi)^{3} \delta\left(\mathbf{P}-\mathbf{P}^{\prime}\right)\right]=2
$$

$\left[\langle P| \widehat{O}_{\mu_{1} \ldots \mu_{n_{\alpha}}}(0)|P\rangle=P_{\mu_{1} \ldots P_{\mu_{n_{\alpha}}}} M^{d-n_{\alpha}-2} c_{\widehat{O}}+o\left(\frac{M^{2}}{Q^{2}}\right)\right]=-d+2$
interacting field theory: radiative corrections \rightarrow structure of singularities from Renormalization Group Equations (RGE) for C

$$
\begin{aligned}
C_{\{\alpha\}}\left(x^{2}\right) \stackrel{x \rightarrow 0}{\sim} \frac{1}{x^{6+n_{\alpha}-d}} & \left(\log ^{\gamma} \hat{O}\left(\mu_{F} x\right)+\ldots\right) \\
& \gamma_{0} \text { anomalous dimension of } \hat{O} \\
& \mu_{F} \text { factorization scale }
\end{aligned}
$$

N.B. dependence on μ_{F} cancels with similar dependence in $\hat{O}\left(0, \mu_{F}\right)$
(cont'ed)
$W_{\mu \nu} \propto \lim _{\epsilon \rightarrow 0} \int d^{4} x e^{i q \cdot x} g_{\mu \nu}$

$$
\begin{aligned}
& \times \sum_{\{\alpha\}}\left(\frac{1}{\left(x^{2}-i \epsilon\right)^{3+\frac{n_{\alpha}-d}{2}}}-\frac{1}{\left(x^{2}+i \epsilon\right)^{3+\frac{n_{\alpha}-d}{2}}}\right) \\
& \times x^{\mu_{1}} \ldots x^{\mu_{n_{\alpha}}} P_{\mu_{1} \ldots P_{\mu_{n_{\alpha}}}} M^{d-n_{\alpha}-2} c_{\widehat{O}} \\
& \sim g_{\mu \nu} c_{\widehat{O}} \sum_{\{\alpha\}} c_{\{\alpha\}}^{\prime}\left(\frac{M}{\sqrt{q^{2}}}\right)^{d-n_{\alpha}-2}\left(\frac{1}{x_{B}}\right)^{n_{\alpha}}
\end{aligned}
$$

for $\mathrm{x} \rightarrow 0$ (ie., $\mathrm{q}^{2} \rightarrow \infty$) importance of \hat{O} determined by twist $\mathrm{t}=\mathrm{d}-\mathrm{n}_{\alpha}$

$$
t \geq 2 \quad(t=2 \rightarrow \text { scaling in DIS regime })
$$

summarizing

procedure for calculating $\mathrm{W}_{\mu \nu}$:

- OPE expansion for bilocal operator in series of local operators
- Fourier transform of each term
- sum all of them
- final result written as power series in M/Q through twist $t=d$ (canonical dimension) $-n_{\alpha}($ spin $) \geq 2$

$$
\begin{aligned}
& 2 M W_{\mu \nu}=\frac{1}{2 \pi} \int d^{4} x e^{i q \cdot x}\langle P|\left[J_{\mu}(x), J_{\nu}(0)\right]|P\rangle \\
& \sim \frac{1}{2 \pi^{2}} \sigma_{\mu \lambda \nu \rho} \int d^{4} x e^{i q \cdot x} x^{\lambda} \epsilon\left(x^{0}\right) \partial^{1}\left(x^{2}\right)\langle P| \widehat{O}_{V}^{\rho}(x, 0)|P\rangle \\
& \sim \sum_{\{\alpha\}} \int d^{4} x e^{i q \cdot x}\left[C_{\mu \nu\{\alpha\}}\left(x^{2}\right)-\left(C_{\mu \nu}\{\alpha\}\left(x^{2}\right)\right)^{\dagger}\right] x^{\mu_{1}} \ldots x^{\mu_{n \alpha}}\langle P| \widehat{O}_{\mu_{1} \ldots \mu_{n_{\alpha}}}(0)|P\rangle \\
& \sim c_{\hat{O}} \sum_{\{\alpha\}} c_{\mu \nu,\{\alpha\}}^{\prime}\left(\frac{M}{\sqrt{q^{2}}}\right)^{d-n_{\alpha}-2}\left(\frac{1}{x_{B}}\right)^{n_{\alpha}} \sim \frac{1}{\left(x^{2}\right)^{3+\frac{n_{\alpha}-d}{2}}}
\end{aligned}
$$

(cont'ed)

is it possible to directly work with bilocal operators skipping previous steps? which is the twist t of a bilocal operator?

Example:

$$
\begin{array}{cc}
\bar{\psi}(0) \gamma^{\mu} \psi(x) & =\bar{\psi}(0) \gamma^{\mu} \psi(0)+x_{\nu} \bar{\psi}(0) \gamma^{\mu} \partial^{\nu} \psi(0)+\ldots \\
& \equiv J^{\mu}(0)+x_{\nu} \theta^{\mu \nu}(0)+\ldots \\
t=2 & \theta^{\mu \nu}=\left(\theta^{\mu \nu}-\frac{1}{4} g^{\mu \nu} \theta_{\lambda}^{\lambda}\right)+\frac{1}{4} g^{\mu \nu} \theta_{\lambda}^{\lambda} \\
t=2 & t=4
\end{array}
$$

hence, if local version of bilocal operator has twist $t=2$
\rightarrow bilocal operator has twist $t \geq 2$

operational definition of twist

since a bilocal operator with twist t can be expanded as

$$
\left(\frac{M}{Q}\right)^{t-2},\left(\frac{M}{Q}\right)^{t+2-2} \cdots, \quad t \geq 2
$$

operational definition of twist for a regular bilocal operator
the leading power in M / Q at which the operator matrix element contributes to the considered deep-inelastic process in short distance limit (\Leftrightarrow in DIS regime)
power series parametrizes the bilocal operator Φ

N.B. - the necessary powers of M are determined by decomposing the matrix element in Lorentz tensors and making a dimensional analysis

- definition does not coincide with $t=d$ - spin, but this is more convenient and it allows to directly estimate the level of suppression as $1 / Q$

N.B. for the moment only inclusive $\mathrm{e}^{+} \mathrm{e}^{-}$and DIS

OPE valid only for inclusive $\mathrm{e}^{+} \mathrm{e}^{-}$and DIS

$$
\begin{aligned}
& \quad W^{\mu \nu}=\int d^{4} \xi e^{i q \cdot \xi}\langle 0|\left[J^{\mu}(\xi), J^{\nu}(0)\right]|0\rangle \\
& q^{\mu} \stackrel{\text { c.m. }}{=}\left(q^{0}, 0\right) \text { regime DIS: } Q^{2} \rightarrow \infty \Rightarrow q^{0} \rightarrow \infty \\
& \text { causalità } \Rightarrow[. .] \text { definito su } \xi^{2} \geq 0 \\
& \text { contributo principale all'integrale da } q \cdot \xi \text { finito } \\
& \Rightarrow \xi^{0} \sim 0 \Rightarrow \xi \sim 0
\end{aligned}
$$

composite operator at short distance \rightarrow OPE
semi-inclusive $\mathrm{e}^{+} \mathrm{e}^{-}$

$$
W^{\mu \nu}=\frac{1}{4 \pi} \sum_{X} \int d^{4} \xi e^{i q \cdot \xi}\langle 0| J^{\mu}(\xi)\left|P_{h} X\right\rangle\left\langle P_{h} X\right| J^{\nu}(0)|0\rangle
$$

hadron rest frame $P_{h}{ }^{4}=\left(M_{h}, \mathbf{0}\right)$
$q \cdot \xi$ finite $\rightarrow W^{\mu \nu}$ dominated by $\xi^{2} \sim 0$
but ket $\left|P_{h}\right\rangle$ prevents closure \sum_{x}
\rightarrow OPE cannot be applied

semi-inclusive DIS

$$
2 M W^{\mu \nu} \propto \sum_{X} \int d^{4} \xi e^{i q \cdot \xi}\langle P| J^{\mu}(\xi)\left|P_{h} X\right\rangle\left\langle P_{h} X\right| J^{\nu}(0)|P\rangle
$$

ket $\left|\mathrm{P}_{\mathrm{h}}\right\rangle$ prevents closure \sum_{x}
\rightarrow OPE cannot be applied
Drell-Yan

$$
W^{\mu \nu}=\frac{1}{2} s \int d^{4} \xi e^{i q \cdot \xi}\left\langle P_{1} P_{2}\right| J^{\mu}(\xi) J^{\nu}(0)\left|P_{1} P_{2}\right\rangle
$$

$$
q \cdot \xi \text { finite } \rightarrow \text { dominance of } \xi^{2} \sim 0
$$

but < .. > is not limited in any frame since $s=\left(P_{1}+P_{2}\right)^{2} \sim 2 P_{1} \cdot P_{2} \geq Q^{2}$ and in $Q^{2} \rightarrow \infty$ limit both P_{1}, P_{2} are not limited
$W^{\mu \nu}$ gets contributes outside the light-cone!
which are the dominant diagrams for processes where OPE cannot be applied?
is it possible to apply the OPE formalism (factorization) also to semi-inclusive processes?

classify dominant contributions in various hard processes

 preamble :- free quark propagator at short distance $\mathrm{S}_{\mathrm{F}}(\mathrm{x})$

$$
\begin{aligned}
& S_{F}(x)=(i \gamma \cdot \partial+m) \Delta(x) \sim(i \gamma \cdot \partial+m) \frac{1}{4 \pi^{2} i} \frac{1}{x^{2}-i \epsilon}+\ldots \\
& \quad=\frac{-2 \gamma \cdot x}{\left(x^{2}-i \epsilon\right)^{2}} \frac{i}{4 \pi^{2} i}+\ldots \sim \frac{1}{x^{3}}+\text { termini meno singolari }
\end{aligned}
$$

- interaction with gluons does not increase singularity

$$
\sim \int \frac{d^{4} y}{(2 \pi)^{4}} S_{F}(x-y)\left\ulcorner S_{F}(x) \sim \frac{1}{x^{2}}\right.
$$

inclusive $\mathrm{e}^{+} \mathrm{e}^{-}$

dominant contribution at short distance $\rightarrow \sigma_{\text {tot }}$ in QPM
radiative corrections $\rightarrow \sim\left(\log x^{2} \mu_{R}{ }^{2}\right)^{n} \rightarrow$ recover OPE results
semi-inclusive $\mathrm{e}^{+} \mathrm{e}^{-}$

2

radiative corrections $\rightarrow \sim\left(\log x^{2} \mu_{R}{ }^{2}\right)^{n}$
factorization between hard vertex and soft fragmentation

2
 radiative corrections $\rightarrow \sim\left(\log x^{2} \mu_{R}{ }^{2}\right)^{n}$ hence recover OPE result
semi-inclusive DIS

factorization between hard e.m. vertex and distribution and fragmentation
from inclusive DIS functions (from soft matrix elements)

for all DIS or $\mathrm{e}^{+} \mathrm{e}^{-}$processes (either inclusive or semi-inclusive) the dominant contribution to hadronic tensor comes from light-cone kin.

- definition and proprerties of light-cone variables
- quantized field theory on the light-cone
- Dirac algebra on the light-cone

