light-cone (LC) variables

4-vector ${ }^{\mu}$

$$
\begin{aligned}
& a^{ \pm}=\frac{1}{\sqrt{2}}\left(a^{0} \pm a^{3}\right) \quad, \quad a_{\perp}=\left(a^{1}, a^{2}\right) \\
& a^{\mu}=\left(a^{0}, a^{1}, a^{2}, a^{3}\right)=\left(a^{+}, a^{-}, a_{\perp}\right)
\end{aligned}
$$

scalar product $\quad a \cdot b=a^{+} b^{-}+a^{-} b^{+}-a_{\perp} \cdot b_{\perp}$

$$
a^{2}=2 a^{+} a^{-}-a_{\perp}^{2}
$$

metric $g^{\mu \nu}=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1\end{array}\right)_{(0,1,2,3)} \rightarrow\left(\begin{array}{cccc}0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1\end{array}\right)_{(+,-, 1,2)}$
LC "basis":
$n_{+}^{\mu}=\left(1,0,0_{\perp}\right) \quad, \quad n_{-}^{\mu}=\left(0,1,0_{\perp}\right) \quad ; \quad n_{ \pm}^{2}=0, n_{+} \cdot n_{-}=1$
$\mathrm{a}^{ \pm}=\mathrm{a} \cdot n_{\mp} \longrightarrow \mathrm{a}^{\mu}=\left(\mathrm{a} \cdot n_{-}\right) n_{+}^{\mu}+\left(\mathrm{a} \cdot n_{+}\right) n_{-}^{\mu}+\mathbf{a}_{\perp}$
"transverse" metric $g_{\perp}^{\mu \nu}=g^{\mu \nu}-n_{+}^{\mu} n_{-}^{\nu}-n_{+}^{\nu} n_{-}^{\mu}=g^{\mu \nu}-n_{+}^{\{\mu} n_{-}^{\nu\}}$

$$
=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

hadron target at rest $\quad P^{\mu} \stackrel{\text { restframe }}{=}(M, 0,0,0)=\frac{1}{\sqrt{2}}\left(M, M, 0_{\perp}\right)$
inclusive DIS

target absorbes momentum from γ^{*}; for example, 2 if $\mathbf{q} \| \mathrm{z} \mathrm{P}_{\mathrm{z}}=0 \rightarrow \mathrm{P}_{\mathrm{z}}^{\prime}=\mathrm{q} \gg \mathrm{M}$ in DIS regime

$$
\begin{array}{rll}
P^{\prime \mu}=\left(\sqrt{M^{2}+P_{z}^{\prime 2}}, 0,0, P_{z}^{\prime}\right) \xrightarrow{Q^{2} \rightarrow \infty} & \left(P_{z}^{\prime}, 0,0, P_{z}^{\prime}\right) \\
= & \left(\sqrt{2} P_{z}^{\prime}, 0, \mathbf{0}_{\perp}\right)
\end{array}
$$

DIS regime \Rightarrow direction "+" dominant direction "-" suppressed
boost of 4 -vector $\mathrm{a}^{\mu} \rightarrow \mathrm{a}^{\prime \mu}$ along z axis

$$
\mathrm{a}^{\prime 0}=\frac{\mathrm{a}^{0}+\beta \mathrm{a}^{3}}{\sqrt{1-\beta^{2}}} \quad \mathrm{a}^{\prime 3}=\frac{\beta \mathrm{a}^{0}+\mathrm{a}^{3}}{\sqrt{1-\beta^{2}}} \quad \mathrm{a}_{\perp}^{\prime}=\mathrm{a}_{\perp}
$$

$$
\begin{aligned}
P^{\mu}= & \frac{1}{\sqrt{2}}\left(M, M, 0_{\perp}\right) \\
& \quad \text { boost along }
\end{aligned}
$$

$$
a^{\prime+}=\frac{1}{\sqrt{2}} \frac{(1+\beta)\left(a^{0}+a^{3}\right)}{\sqrt{1-\beta^{2}}}=a^{+} \sqrt{\frac{1+\beta}{1-\beta}}=a^{+} e^{\psi}
$$ z axis

$$
\mathrm{a}^{\prime-}=\mathrm{a}^{-} \sqrt{\frac{1-\beta}{1+\beta}}=\mathrm{a}^{-} e^{-\psi}
$$

$$
P^{\prime \mu}=\frac{1}{\sqrt{2}}\left(A, \frac{M^{2}}{A}, \mathbf{0}_{\perp}\right)
$$

N.B. rapidity

24-Apr-13

$$
\psi=\frac{1}{2} \log \left(\frac{1+\beta}{1-\beta}\right) \Rightarrow \beta=\tanh \psi
$$

$$
P^{\mu}=\frac{1}{\sqrt{2}}\left(A, \frac{M^{2}}{A}, 0_{\perp}\right) \quad \begin{aligned}
& A=M \rightarrow \text { hadron rest frame } \\
& A=Q \rightarrow \text { Infinite Momentum Frame (IFM) }
\end{aligned}
$$

LC kinematics \Leftrightarrow boost to IFM

$$
p^{\mu}=\frac{1}{\sqrt{2}}(x A, \underbrace{\frac{p^{2}+\mathbf{p}_{\perp}^{2}}{x A}}_{\uparrow}, \mathbf{p}_{\perp}) \quad \text { definition }: \quad x=\frac{p^{+}}{P^{+}}
$$

fraction of LC ("longitudinal") momentum

$$
\text { in QPM } x \sim x_{B}
$$

$$
\begin{aligned}
& q^{\mu}=\frac{1}{\sqrt{2}}\left(-x_{N} A, \frac{Q^{2}}{x_{N} A}, \mathbf{0}_{\perp}\right) \\
& 24-\mathrm{Apr-13} \quad q^{2}=2 q^{+} q^{-}-\mathbf{q}_{\perp}^{2}=-Q^{2}
\end{aligned}
$$

it turns out $x_{N} \sim x_{B}+o(M / Q)$
LC components not suppressed

Quantum Field Theory on the light-cone

rules

at time $x^{0}=t=0$
evolution in x^{0}
variables \mathbf{x}
conjugated momenta \mathbf{k}
Hamiltonian k^{0}
field quantum

Rules

at "light-cone" time $\mathrm{x}^{+}=0$
evolution in x^{+}

\qquad

$$
\begin{array}{r}
\psi(x)=\int \frac{d \mathbf{k}}{(2 \pi)^{3} 2 k^{0}} b_{\alpha}(\mathbf{k}) u(\mathbf{k}) e^{-i k \cdot x} \\
+d_{\alpha}^{\dagger}(\mathbf{k}) v(\mathbf{k}) e^{i k \cdot x}
\end{array}
$$

$$
\begin{array}{r}
\psi_{+}(x)=\int \frac{d k^{+} d \mathbf{k}_{\perp}}{(2 \pi)^{3} k^{+}} b_{\alpha}(\mathbf{k}) u_{+}(\mathbf{k}) e^{-i k \cdot x} \\
+d_{\alpha}^{\dagger}(\mathbf{k}) v_{+}(\mathbf{k}) e^{i k \cdot x}
\end{array}
$$

$\left[b_{\alpha}(\mathbf{k}), b_{\alpha^{\prime}}^{\dagger}\left(\mathbf{k}^{\prime}\right)\right]=(2 \pi)^{3} 2 k^{0} \delta\left(\mathbf{k}-\mathbf{k}^{\prime}\right) \delta_{\alpha \alpha^{\prime}}$

$$
\left[b_{\alpha}(\mathbf{k}), b_{\alpha^{\prime}}^{\dagger}\left(\mathbf{k}^{\prime}\right)\right]=(2 \pi)^{3} k^{-} \delta\left(k^{+}-k^{\prime+}\right) \delta\left(\mathbf{k}_{\perp}-\mathbf{k}_{\perp}^{\prime}\right) \delta_{\alpha \alpha^{\prime}}
$$

Fock space

$$
b^{\dagger}|0\rangle \rightarrow q \quad d^{\dagger}|0\rangle \rightarrow \bar{q}
$$

Dirac algebra on the light-cone

usual representation of Dirac matrices

$$
\gamma^{0}=\left(\begin{array}{cc}
\mathbb{I} & 0 \\
0 & -\mathbb{I}
\end{array}\right) \quad \gamma^{i}=\left(\begin{array}{cc}
0 & \sigma_{i} \\
-\sigma_{i} & 0
\end{array}\right) \quad \gamma_{5}=\left(\begin{array}{cc}
0 & \mathbb{I} \\
\mathbb{I} & 0
\end{array}\right)
$$

so (anti-)particles have only upper (lower) components in Dirac spinor
new representation in light-cone field theory

$$
\begin{array}{r}
\gamma^{0}=\left(\begin{array}{cc}
0 & \sigma_{3} \\
\sigma_{3} & 0
\end{array}\right) \quad \gamma^{3}=\left(\begin{array}{cc}
0 & -\sigma_{3} \\
\sigma_{3} & 0
\end{array}\right) \quad \begin{array}{c}
\gamma_{\perp}=\left(\begin{array}{cc}
i \sigma_{\perp} & 0 \\
0 & i \sigma_{\perp}
\end{array}\right) \quad \gamma_{5}=\left(\begin{array}{cc}
\sigma_{3} & 0 \\
0 & -\sigma_{3}
\end{array}\right) \\
\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 g^{\mu \nu} \quad \gamma_{5}=i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3} \\
\text { ok }
\end{array}
\end{array}
$$

definitions : $\gamma^{ \pm}=\frac{1}{\sqrt{2}}\left(\gamma^{0} \pm \gamma^{3}\right) \quad P_{ \pm}=\frac{1}{2} \gamma^{\mp} \gamma^{ \pm}$
projectors $\left(P_{ \pm}\right)^{2}=P_{ \pm} \quad ; \quad P_{+} P_{-}=P_{-} P_{+} \quad, \quad P_{+}+P_{-}=\mathbb{1}$
$P_{+}=\left(\begin{array}{ll}\mathbf{I} & 0 \\ 0 & 0\end{array}\right), P_{-}=\left(\begin{array}{ll}0 & 0 \\ 0 & \mathbb{1}\end{array}\right) \quad|\psi\rangle=\left|\begin{array}{c}\phi \\ \chi\end{array}\right| \quad, \quad P_{+}|\psi\rangle=\phi, P_{-}|\psi\rangle=\chi$
project Dirac eq.

$$
\begin{aligned}
& \left\{\begin{array}{c}
i \gamma^{-} D_{-} \chi=-i \gamma_{\perp} \mathbf{D}_{\perp} \phi-m \phi \longleftarrow \\
i \gamma^{+} D_{+} \phi=-i \gamma_{\perp} \mathbf{D}_{\perp} \chi-m \chi
\end{array} \begin{array}{l}
\text { does not contain "time" } \mathrm{x}^{+}: \\
\phi, \mathbf{A}_{\perp} \text { independent degrees of freedom }
\end{array}\right. \\
& |\psi\rangle=\left|\begin{array}{c}
\phi \\
\chi
\end{array}\right| \longleftarrow \quad \begin{array}{cc}
\text { "good" } & \text { "bad" light-cone components } \begin{array}{l}
P_{+}|\psi\rangle \\
P_{-}|\psi\rangle
\end{array} \\
\text { component "good" } \rightarrow \text { independent and leading } \\
\text { component "bad" } \rightarrow \text { dependent from interaction (quark-gluon) } \\
\text { and therefore at higher order }
\end{array}
\end{aligned}
$$

quark polarization

generator of spin rotations around $z \quad \Sigma^{3}=\frac{i}{2}\left[\gamma^{1}, \gamma^{2}\right]=\left(\begin{array}{cc}\sigma_{3} & 0 \\ 0 & \sigma_{3}\end{array}\right)$ if momentum $k \| z$, it gives helicity
$\gamma^{1}, \gamma^{2}, \gamma_{5}$ commute with $\mathrm{P}_{ \pm} \rightarrow 2$ possible choices :

- diagonalize γ_{5} and $\Sigma^{3} \rightarrow$ helicity basis
- diagonalize γ^{1} (or γ^{2}) \rightarrow "transversity" basis
N.B. in helicity basis $\quad \gamma_{5}=\left(\begin{array}{cc}\sigma_{3} & 0 \\ 0 & -\sigma_{3}\end{array}\right) \quad \Sigma^{3}=\left(\begin{array}{cc}\sigma_{3} & 0 \\ 0 & \sigma_{3}\end{array}\right)$
helicity = chirality for component "good" ϕ helicity $=-$ chirality for component "bad" χ
N.B. projector for transverse polarization $\quad P_{\uparrow / \downarrow}=\frac{1}{2}\left(1 \mp \gamma_{5} \gamma^{1}\right) \quad\left[P_{\uparrow / \downarrow}, P_{ \pm}\right]=0$ we define $\quad P_{\uparrow / \downarrow} \phi=\phi_{\perp / \top}=f\left(\phi_{ \pm}\right)$

go back to OPE for inclusive DIS

$$
\begin{aligned}
& W_{\mu \nu} \propto \int d^{4} x e^{i q \cdot x}\langle P|\left[J_{\mu}(x), J_{\nu}(0)\right]|P\rangle \quad \text { quark current } \quad J^{\mu} \sim \sum_{f} e_{f}^{2} \bar{\psi}_{f} \gamma^{\mu} \psi_{f} \\
& 2 M W^{\mu \nu} \sim \sum_{f} e_{f}^{2} \int d^{4} p \delta\left((p+q)^{2}-m^{2}\right) \theta\left(p^{0}+q^{0}-m\right) \\
& \operatorname{Tr}\left[\Phi_{\mathrm{ij}}(p, P) \gamma_{\mathrm{im}}^{\mu}\left(\not{ }^{\prime}+q+\underset{\mathrm{mr}}{\mathrm{mj}} \gamma_{\mathrm{nj}}^{\nu}+\bar{\Phi}(p, P) \gamma^{\nu}(\not p+q-m) \gamma^{\mu}\right]\right. \\
& \Phi(p, P)=\int \frac{d^{4} \xi}{(2 \pi)^{4}} e^{-i p \cdot \xi}\langle P| \bar{\psi}_{f}(\xi) \psi_{f}(0)|P\rangle \\
& =\int \frac{d \mathbf{P}_{X}}{(2 \pi)^{3} 2 P_{X}^{0}}\langle P| \bar{\psi}_{f}(0)\left|P_{X}\right\rangle\left\langle P_{X}\right| \psi_{f}(0)|P\rangle \delta\left(P-p-P_{X}\right) \\
& \text { bilocal operator, } \\
& \text { contains twist } \geq 2
\end{aligned}
$$

$\operatorname{IFM}\left(Q^{2} \rightarrow \infty\right) \Rightarrow$ isolate leading contribution in $1 / Q$

IFM: leading contribution

$$
\begin{aligned}
& \left(P^{\mu}=\frac{1}{\sqrt{2}}\left(A, \frac{M^{2}}{A}, \mathbf{0}_{\perp}\right) \xrightarrow{A=Q} P^{\mu} \sim\left(Q, \frac{1}{Q}, \mathbf{0}_{\perp}\right) \xrightarrow{Q^{2} \rightarrow \infty}\left(Q, 0^{\prime}, \mathbf{0}_{\perp}\right)\right. \\
& p^{\mu}=\frac{1}{\sqrt{2}}\left(x A, \frac{p^{2}+\mathbf{p}_{\perp}^{2}}{x A}, \mathbf{p}_{\perp}\right) \xrightarrow{A=Q} \frac{1}{\sqrt{2}}\left(x Q, \frac{p^{2}+\mathbf{p}_{\perp}^{2}}{x Q}, \mathbf{p}_{\perp}\right) \sim\left(Q, 0, \mathbf{0}_{\perp}\right) \\
& q^{\mu}=\frac{1}{\sqrt{2}}\left(-x_{N} A, \frac{Q^{2}}{x_{N} A}, \mathbf{0}_{\perp}\right) \stackrel{A=Q}{\longrightarrow} \frac{1}{\sqrt{2}}\left(-x_{N} Q, \frac{Q}{x_{N}}, \mathbf{0}_{\perp}\right) \\
& \text { N.B. } p^{+} \sim Q \rightarrow(p+q)^{-} \sim Q \\
& 2 M W^{\mu \nu}=\sum_{f} e_{f}^{2} \int d^{4} p \delta\left((p+q)^{2}-m^{2}\right) \theta\left(p^{0}+q^{0}-m\right) \\
& \times \operatorname{Tr}\left[\Phi(p, P) \gamma^{\mu}(\gamma \cdot p+\gamma \cdot q+m) \gamma^{\nu}\right] \\
& \left.\sim \frac{1}{2} \sum_{f} e_{f}^{2} \int d p^{-} d \mathbf{p}_{\perp} \operatorname{Tr}\left[\Phi(p, P) \gamma^{\mu} \gamma^{+} \gamma^{\nu}\right]\right|_{p^{+}=x P^{+}} \\
& \delta\left(p^{+}+q^{+}\right)=\delta\left(x P^{+}-x_{N} P^{+}\right) \rightarrow x \sim x_{N} \sim x_{B} \\
& \text { (analogously for antiquark) }
\end{aligned}
$$

- decomposition of Dirac matrix $\Phi(p, P, S)$ on basis of Dirac structures with 4-(pseudo)vectors p,P,S compatible with Hermiticity and parity invariance

$$
\begin{aligned}
& \Phi(p, P, S)=\gamma^{0} \Phi^{\dagger}(p, P, S) \gamma^{0} \\
& \Phi(p, P, S)=\gamma^{0} \Phi(\tilde{p}, \tilde{P},-\tilde{S}) \gamma^{0}
\end{aligned}
$$

Dirac basis

$$
\mathbb{I}, i \gamma_{5}, \gamma^{\mu}, \gamma^{\mu} \gamma_{5}, \sigma^{\mu \nu}, i \sigma^{\mu \nu} \gamma_{5}
$$

$$
\tilde{a}^{\mu}=\left(a_{0},-\mathbf{a}\right)
$$

$$
\Phi(p, P, S)=A_{1} M+A_{2} \not P+A_{3} p+A_{4} \sigma_{\mu \nu} P^{\mu} p^{\nu}+i A_{5} p \cdot S \gamma_{5}+A_{6} M \not \phi^{\prime} \gamma_{5}
$$

$$
+A_{7} \frac{p \cdot S}{M} \not P \gamma_{5}+A_{8} \frac{p \cdot S}{M} \not p \gamma_{5}+i A_{9} \sigma_{\mu \nu} \gamma_{5} S^{\mu} P^{\nu}+i A_{10} \sigma_{\mu \nu} \gamma_{5} S^{\mu} p^{\nu}
$$

$$
+i A_{11} \frac{p \cdot S}{M^{2}} \sigma_{\mu \nu} \gamma_{5} P^{\mu} p^{\nu}+A_{12} \epsilon_{\mu \nu \rho \sigma} \frac{\gamma^{\mu} P^{\nu} p^{\rho} S^{\sigma}}{M}
$$

$$
\text { time-reversal } \rightarrow 0
$$

$$
\Phi^{*}(p, P, S)=-\mathrm{i} \gamma^{1} \gamma^{3} \Phi(\tilde{p}, \tilde{P}, \tilde{S}) \mathrm{i} \gamma^{1} \gamma^{3}
$$

$$
\left.\operatorname{Tr}\left[\Phi(p, P) \gamma^{\mu} \gamma^{+} \gamma^{\nu}\right]\right|_{p^{+}=x P^{+}}=-4 g_{\perp}^{\mu \nu} \underbrace{\left(A_{2}+x A_{3}\right) P^{+}}_{\substack{d p^{-} d \mathbf{p}_{\perp} . .\left.\right|_{p^{+}=x P^{+}} \rightarrow \mathrm{q}_{\mathrm{f}}(\mathrm{x}) \\ \text { imilar for antiouar }}}
$$

$$
2 M W^{\mu \nu} \sim-g_{\perp}^{\mu \nu} \frac{1}{2} \sum_{f} e_{f}^{2}\left[q_{f}(x)+\bar{q}_{f}(x)\right]+o\left(\frac{1}{Q}\right)
$$

(cont'ed)

$$
\begin{gathered}
2 M W^{\mu \nu} \sim-g_{\perp}^{\mu \nu} \underbrace{\frac{1}{2} \sum_{f} e_{f}^{2}\left[q_{f}(x)+\bar{q}_{f}(x)\right.}_{\mathrm{F}_{1}\left(\mathrm{x}_{\mathrm{B}}\right) \rightarrow \text { QPM result }})+o\left(\frac{1}{Q}\right) \\
\mathrm{x} \approx \mathrm{x}_{\mathrm{B}} \quad \\
W^{\mu \nu}=\left(-g^{\mu \nu}+\frac{q^{\mu} q^{\prime}}{q^{2}}\right) W_{1}+\frac{\tilde{P}^{\mu} \tilde{p}^{\nu}}{M^{2}} W_{2} \quad \begin{array}{l}
\begin{array}{l}
W_{1} \text { response to transverse } \\
\text { polarization of } \gamma^{*} \longrightarrow
\end{array}-g_{\perp}^{\mu \nu} F_{1}
\end{array}
\end{gathered}
$$

Summary :

bilocal operator Φ has twist ≥ 2; leading-twist contribution extracted in IFM selecting the dominant term in $1 / \mathrm{Q}\left(\mathrm{Q}^{2} \rightarrow \infty\right)$; equivalently, calculating Φ on the LC
at leading twist $(\mathrm{t}=2)$ recover QPM result for unpolarized $\mathrm{W}^{\mu \nu}$; but what is the general result for $t=2$?

Decomposition of Φ at leading twist

Dirac basis

$$
\left\{\mathbf{I}, \gamma^{\mu}, \gamma^{\mu} \gamma_{5}, i \gamma_{5}, i \sigma^{\mu \nu} \gamma_{5}\right\}
$$

$$
\Phi(p, P, S)=\frac{1}{2}\left[S \mathbf{I}+V_{\mu} \gamma^{\mu}+A_{\mu} \gamma^{\mu} \gamma_{5}+i P \gamma_{5}+i T_{\mu \nu} \sigma^{\mu \nu} \gamma_{5}\right]
$$

$$
S=\frac{1}{2} \operatorname{Tr}(\Phi)=C_{1}\left(p^{2}, p \cdot P\right)
$$

$$
V^{\mu}=\frac{1}{2} \operatorname{Tr}\left(\gamma^{\mu} \Phi\right)=C_{2} P^{\mu}+C_{3} p^{\mu}
$$

$$
A^{\mu}=\frac{1}{2} \operatorname{Tr}\left(\gamma^{\mu} \gamma_{5} \Phi\right)=C_{4} S^{\mu}+C_{5} p \cdot S P^{\mu}+C_{6} P \cdot S p^{\mu}
$$

$$
P_{5}=\frac{1}{2 i} \operatorname{Tr}\left(\gamma_{5} \Phi\right)=0
$$

$$
T^{\mu v}=\frac{1}{2 i} \operatorname{Tr}\left(\sigma^{\mu \nu} \Phi\right)=C_{7} P^{[\mu} S^{\nu]}+C_{8} p^{[\mu} S^{\nu]}+C_{9} p \cdot S P^{[\mu} p^{\nu]}
$$

$\operatorname{Tr}\left[\mathrm{Y}^{+} \ldots\right] \rightarrow \quad q_{f}(x)=\Phi{ }^{\left[\gamma^{+}\right]}=\int \frac{d \xi^{-}}{2 \pi} e^{-i x P^{+} \xi^{-}}\langle P| \bar{\psi}_{f}\left(\xi^{-}\right) \gamma^{+} \psi_{f}(0)|P\rangle$
$\operatorname{Tr}\left[\mathrm{Y}^{+} \gamma_{5} \ldots\right] \rightarrow \quad \Delta q_{f}(x)=\Phi{ }^{\left[\gamma^{+} \gamma_{5}\right]}=\int \frac{d \xi^{-}}{2 \pi} e^{-i x P^{+} \xi^{-}}\langle P| \bar{\psi}_{f}\left(\xi^{-}\right) \gamma^{+} \gamma_{5} \psi_{f}(0)|P\rangle$
$\operatorname{Tr}\left[\mathrm{y}^{+} \gamma^{\mathrm{i}} \gamma_{5} \ldots\right] \rightarrow \quad \delta q_{f}(x)=\Phi{ }^{\left[i \sigma^{i+} \gamma_{5}\right]}=\int \frac{d \xi^{-}}{2 \pi} e^{-i x P^{+} \xi^{-}}\langle P| \bar{\psi}_{f}\left(\xi^{-}\right) i \sigma^{i+} \gamma_{5} \psi_{f}(0)|P\rangle$

Trace of bilocal operator \rightarrow partonic density

$$
\begin{aligned}
\Phi^{\left[\gamma^{+}\right]}(x)= & \left.\int d p^{-} d \mathbf{p}_{\perp} \operatorname{Tr}\left[\Phi(p, P) \gamma^{+}\right]\right|_{p^{+}=x P^{+}} \\
= & \left.\sqrt{2} \sum_{n}\left|\langle n| \phi_{f}(0)\right| P\right\rangle\left.\right|^{2} \delta\left(P^{+}-x P^{+}-P_{n}^{+}\right) \equiv q_{f}(x) \\
& \text { LC "good" components }
\end{aligned} \begin{aligned}
& \text { probability density } \\
& \text { of annihilating in } \mid \mathrm{P}> \\
& \text { a quark with momentum } \mathrm{xP}^{+}
\end{aligned}
$$

similarly for antiquark

$$
\begin{aligned}
& \Phi{ }^{\left[\gamma^{+}\right]}(x)+\bar{\Phi} \gamma^{\left[\gamma^{+}\right]}(x)=\left.\int d p^{-} d \mathbf{p}_{\perp} \operatorname{Tr}\left[\Phi(p, P, S) \gamma^{+}-\Phi(p, P, S) \gamma^{+}\right]\right|_{p^{+}=x P^{+}} \\
& =q_{f}(x)+\bar{q}_{f}(x)
\end{aligned}
$$

$=$ probability of finding a (anti)quark with flavor f and fraction x of longitudinal (light-cone) momentum P^{+}of hadron
in general :

$$
\Phi^{[\ulcorner]}(x, S)=\int d p^{-} d \mathbf{p}_{\perp} \operatorname{Tr}\left[\left.\Phi(p, P, S)\ulcorner]\right|_{p^{+}=x P^{+}}\right.
$$

leading-twist projections (involve "good" components of ϕ)

$$
\begin{aligned}
& \Phi{ }^{\left[\gamma^{+}\right]}(x, S)=q(x) \\
& \Phi{ }^{\left[\gamma^{+} \gamma_{5}\right]}(x, S)=\lambda \Delta q(x) \\
& \Phi{ }^{\left[i \sigma^{i+} \gamma_{5}\right]}(x, S)=S_{T}^{i} \delta q(x)
\end{aligned}
$$

twist 3 projections
(involve "good" ϕ and "bad" χ components)

$$
\begin{aligned}
\Phi^{[\mathbb{I}]}(x, S) & =\frac{M}{P^{+}} e(x) \\
\Phi{ }^{\left[\gamma^{i} \gamma_{5}\right]}(x, S) & =\frac{M}{P^{+}} S_{T}^{i} g_{T}(x) \\
\Phi^{\left[i \sigma^{+-} \gamma_{5}\right]}(x, S) & =\frac{M}{P^{+}} \lambda h_{L}(x)
\end{aligned}
$$

Example: $\left.\int d p^{-} d \mathbf{p}_{\perp} \operatorname{Tr}[\Phi(p, P, S) \mathbb{I}]\right|_{p^{+}=x P^{+}}=\frac{M}{P^{+}} \int \frac{d \xi^{-}}{2 \pi} e^{-i x P^{+} \xi^{-}}\langle P| \underbrace{\bar{\psi}\left(\xi^{-}\right) \psi(0)}|P\rangle$

$$
\psi^{\dagger} \gamma^{0} \psi=\underline{\bar{\phi} \chi}\left(\begin{array}{cc}
0 & \sigma_{3} \\
\sigma_{3} & 0
\end{array}\right)\left|\begin{array}{c}
\phi \\
\chi
\end{array}\right| \sim \phi^{\dagger} \sigma_{3} \chi \rightarrow \phi^{\dagger} \sigma_{3}(i \not D+m) \dot{\phi}
$$

probabilistic interpretation at leading twist

helicity (chirality) projectors $\quad P_{R / L}=\frac{1 \pm \gamma_{5}}{2} \quad\left[P_{R / L}, P_{ \pm}\right]=0$

$$
\begin{aligned}
& \Phi\left[\gamma^{+}\right] \rightarrow \bar{\psi} \gamma^{+} \psi \rightarrow \psi^{\dagger} P_{+} \psi \rightarrow \phi^{\dagger} \phi=\phi^{\dagger}\left(P_{R}+P_{L}\right)^{\dagger}\left(P_{R}+P_{L}\right) \phi \\
& \quad=\phi^{\dagger}\left(P_{R}^{\dagger} P_{R}+P_{L}^{\dagger} P_{L}\right) \phi=\bar{R} R+\bar{L} L
\end{aligned}
$$

momentum distribution

$$
\begin{array}{lll}
\Phi\left[\gamma^{+} \gamma_{5}\right] \rightarrow \bar{\psi} \gamma^{+} \gamma_{5} \psi \rightarrow \psi^{\dagger} P_{+} \gamma_{5} P_{+} \psi \rightarrow \phi^{\dagger}\left(P_{R}-P_{L}\right) \phi & \\
& =\phi^{\dagger}\left(P_{R}^{\dagger} P_{R}-P_{L}^{\dagger} P_{L}\right) \phi=\bar{R} R-\bar{L} L & {\left[P_{ \pm}, \gamma_{5}\right]=0}
\end{array}
$$

helicity distribution
$\Phi{ }^{\left[i \sigma^{i+} \gamma_{5}\right]} \rightarrow \bar{\psi} i \sigma^{i+} \gamma_{5} \psi \ldots \rightarrow \phi^{\dagger}\left(P_{L}^{\dagger} \gamma^{i} P_{R}-P_{R}^{\dagger} \gamma^{i} P_{L}\right) \phi$ projector of transverse polarization $\quad P_{\uparrow / \downarrow}=\frac{1 \pm \gamma^{i} \gamma_{5}}{2} \quad$ (from telicity basis \quad to transversity basis)

$$
\Phi^{\left[i \sigma^{i+} \gamma_{5}\right]} \rightarrow \bar{\psi} i \sigma^{i+} \gamma_{5} \psi \ldots \rightarrow \phi^{\dagger}\left(P_{\uparrow} P_{\uparrow}-P_{\downarrow} P_{\downarrow}\right) \phi
$$

$\rightarrow \delta q$ is "net" distribution of transverse polarization ! more usual and "comfortable" notations:

$$
\begin{array}{ccc}
\Phi\left[\gamma^{+}\right](x, S) \quad=q(x) \quad \longrightarrow f_{1}^{q}(x) & \mathrm{f}_{1}= \\
\text { unpolarized quark } q \text { leading twist }
\end{array}
$$

$$
\begin{gathered}
\Phi\left[\gamma^{+} \gamma_{5}\right](x, S)=\lambda \Delta q(x) \longrightarrow \lambda g_{1}^{q}(x) \quad \mathrm{g}_{1}=\varnothing \\
\text { long. polarized quark } \vec{q}^{(}
\end{gathered}
$$

$$
\begin{gathered}
\Phi^{\left[i \sigma^{i+} \gamma_{5}\right.} \\
24-\mathrm{Apr-13}
\end{gathered}
$$

$$
\longrightarrow S_{T}^{i}{\underset{\uparrow}{1}}_{q_{1}^{q}(x)} \quad{ }^{\uparrow} \text { tara }
$$

$$
\mathrm{h}_{1}=4
$$

need for 3 Parton Distribution Functions al leading twist

target with helicity P emits
parton with helicity p hard scattering parton with helicity p^{\prime} reabsorbed in discontinuity in u channel of forward scattering amplitude parton-hadron

at leading twist only "good" components $|\psi\rangle \sim$ process is collinear modulo o(1/Q)
\Rightarrow helicity conservation $\mathrm{P}+\mathrm{p}^{\prime}=\mathrm{p}+\mathrm{P}^{\prime}$
ϕ_{+}
ϕ_{-}
$o(1 / Q)$
$o(1 / Q)$

(cont'ed)

invariance for parity transformations $\rightarrow \mathrm{A}_{\mathrm{Pp}, \mathrm{P}^{\prime} \mathrm{p}^{\prime}}=\mathrm{A}_{\text {-P-p.-P } \mathrm{P}^{\prime}-\mathrm{p}^{\prime}}$ invariance for time-reversal $\rightarrow A_{P p, P^{\prime} p^{\prime}}=A_{P^{\prime} p^{\prime}, P p}$

constraints $\rightarrow 3 \mathrm{~A}_{\mathrm{Pp}, \mathrm{P}^{\prime} \mathrm{p}^{\prime}}$ independent

$$
\left\{\begin{array}{c}
(+,+) \rightarrow(+,+)+(+,-) \rightarrow(+,-) \equiv \mathrm{f}_{1} \bar{R} R+\bar{L} L \\
(+,+) \rightarrow(+,+)-(+,-) \rightarrow(+,-) \equiv \mathrm{g}_{1} \bar{R} R-\bar{L} L \\
(+,+) \rightarrow(-,-) \equiv \mathrm{h}_{1} \quad \bar{L} R
\end{array}\right.
$$

helicity basis $\quad h_{1} \sim \phi^{\dagger} P_{L}^{\dagger} \gamma_{i} P_{R} \phi$
transversity basis $\quad h_{1} \sim \phi^{\dagger}\left(P_{\uparrow}^{\dagger} P_{\uparrow}-P_{\downarrow}^{\dagger} P_{\downarrow}\right) \phi$
$\langle\uparrow| \ldots|\uparrow\rangle-\langle\downarrow| \ldots|\downarrow\rangle \propto\langle+| \ldots|-\rangle+\langle-| \ldots|+\rangle$
$\left\{\begin{array}{l}\rangle\rangle=\frac{1}{\sqrt{\sqrt{2}}}(|+\rangle+|-\rangle) \\ \left|\rangle\rangle=\frac{1}{\sqrt{2}}(|+\rangle-|-\rangle)\right.\end{array}\right.$
for "good" components (\Leftrightarrow twist 2) helicity = chirality hence h_{1} does not conserve chirality (chiral odd)

QCD conserves helicity at leading twist massless quark spinors $\lambda= \pm 1$

different properties between f_{1}, g_{1} and h_{1}

for inclusive DIS in QPM, correspondence between PDF's and structure fnct's

$$
\begin{aligned}
& f_{1}(x) \rightarrow F_{1}\left(x_{B}\right)=\frac{1}{2} \sum_{f} e_{f}^{2}\left[f_{1}^{f}\left(x_{B}\right)+\bar{f}_{1}^{f}\left(x_{B}\right)\right] \longrightarrow \frac{1}{2} \sum_{f \bar{f}} e_{f}^{2}\left[q_{f}^{\uparrow}\left(x_{B}\right)+q_{f}^{\downarrow}\left(x_{B}\right)\right] \\
& g_{1}(x) \rightarrow G_{1}\left(x_{B}\right)=\frac{1}{2} \sum_{f} e_{f}^{2}\left[g_{1}^{f}\left(x_{B}\right)+\bar{g}_{1}^{f}\left(x_{B}\right)\right] \longrightarrow \frac{1}{2} \sum_{f \bar{f}} e_{f}^{2}\left[q_{f}^{\uparrow}\left(x_{B}\right)-q_{f}^{\downarrow}\left(x_{B}\right)\right]
\end{aligned}
$$

but h_{1} has no counterpart at structure function level, because for inclusive polarized DIS, in $W_{A}{ }^{\mu \nu}$ the contribution of G_{2} is suppressed with respect to that of G_{1} : it appears at twist 3
$W_{A}^{\mu \nu}=i \epsilon^{\mu \nu \rho \sigma} q_{\rho} S_{\sigma}\left[M G_{1}\left(\nu, Q^{2}\right)+\frac{P \cdot q}{M} G_{2}\left(\nu, Q^{2}\right)\right]-i \epsilon^{\mu \nu \rho \sigma} q_{\rho} P_{\sigma} \frac{S \cdot q}{M} G_{2}\left(\nu, Q^{2}\right)$
for several years h_{1} has been ignored; common belief that transverse polarization would generate only twist-3 effects, confusing with g_{T} in G_{2}

$$
\Phi\left[\gamma^{i} \gamma_{5}\right](x, S)=\frac{M}{P^{+}} S_{T}^{i} g_{T}(x) \longrightarrow g_{1}(x)+g_{2}(x)=\sum_{f} \frac{e_{f}^{2} m_{f}}{2 M x}\left[q_{f}(x)-q_{f}^{\leftarrow}(x)\right]
$$

in reality, this bias is based on the misidentification of transverse spin of hadron (appearing at twist 3 in hadron tensor) and distribution of transverse polarization of partons in transversely polarized hadrons, that does not necessarily appear only at twist 3:

	$\boldsymbol{\Phi}^{[\Gamma]}$	long. pol.	$\boldsymbol{\Phi}^{[\Gamma]}$	transv. pol.
twist 2	$\gamma^{+} \gamma_{5}$	$\mathrm{~g}_{1}$	$\mathrm{i} \sigma^{\mathrm{i}+} \gamma_{5}$	$\mathrm{~h}_{1}$
twist 3	$\mathrm{i} \sigma^{+-} \gamma_{5}$	$\mathrm{~h}_{\mathrm{L}}$	$\gamma^{\mathrm{i}} \gamma_{5}$	$\mathrm{~g}_{\mathrm{T}}$

perfect "crossed" parallel between $t=2$ and $t=3$ for both helicity and transversity
moreover, h_{1} has same relevance of f_{1} and g_{1} at twist 2 . In fact, on helicity basis f_{1} and g_{1} are diagonal whilst h_{1} is not,
$f_{1} \sim \phi^{\dagger}\left(P_{R}^{\dagger} P_{R}+P_{L}^{\dagger} P_{L}\right) \phi \quad g_{1} \sim \phi^{\dagger}\left(P_{R}^{\dagger} P_{R}-P_{L}^{\dagger} P_{L}\right) \phi \quad h_{1} \sim \phi^{\dagger} P_{L}^{\dagger} P_{R} \phi$
but on transversity basis the situation is reversed:
$f_{1} \sim \phi^{\dagger}\left(P_{\uparrow}^{\dagger} P_{\uparrow}+P_{\downarrow}^{\dagger} P_{\downarrow}\right) \phi \quad g_{1} \sim \phi^{\dagger} P_{\downarrow}^{\dagger} P_{\uparrow} \phi \quad h_{1} \sim \phi^{\dagger}\left(P_{\uparrow}^{\dagger} P_{\uparrow}-P_{\downarrow}^{\dagger} P_{\downarrow}\right) \phi$
h_{1} is badly known because it is suppressed in inclusive DIS theoretically, we know its evolution equations up to NLO in α_{s} there are model calculations, and lattice calculations of its first Mellin moment (= tensor charge).
(Barone \& Ratcliffe, Transverse Spin Physics, World Scientific (2003))
only recently first extraction of parametrization of h_{1} with two independent methods by combining data from semi-inclusive reactions:
(Anselmino et al., Phys. Rev. D75 054032 (2007); hep-ph/0701006 updated in arXiv:1303.3822 [hep-ph]

Bacchetta, Courtoy, Radici, Phys. Rev. Lett. 107012001 (2011) JHEP 1303 (2013) 119)

1. h_{1} has very different properties from g_{1}
2. need to define best strategies for extracting it from data

chiral-odd $\mathrm{h}_{1} \rightarrow$ interesting properties with respect to other PDF

- g_{1} and h_{1} (and all PDF) are defined in IFM i.e. boost $Q \rightarrow \infty$ along z axis but boost and Galileo rotations commute in nonrelativistic frame $\rightarrow g_{1}=h_{1}$ any difference is given by relativistic effects \rightarrow info on relativistic dynamics of quarks
- for gluons we define $\mathrm{G}(\mathrm{x})=$ momentum distribution $\Delta G(x)=$ helicity distribution but we have no "transversity" in hadron with spin $1 / 2$

\rightarrow evolution of $h_{1}{ }^{q}$ decoupled from gluons !

$$
\begin{gathered}
\left.\langle P S| \bar{q}^{f} \gamma^{\mu} \gamma_{5} q^{f}|P S\rangle\right|_{Q^{2}}=2 \lambda P^{\mu} \int d x\left[g_{1}^{f}\left(x, Q^{2}\right) \oplus g_{1}^{\bar{f}}\left(x, Q^{2}\right)\right]=2 \lambda P^{\mu} g_{A} \\
\text { axial charge } \\
\left.\langle P S| \bar{q}^{f} i \sigma^{\mu \nu} \gamma_{5} q^{f}|P S\rangle\right|_{Q^{2}}=2 S^{[\mu} P^{\nu]} \int d x\left[h_{1}^{f}\left(x, Q^{2}\right) \ominus h_{1}^{\bar{f}}\left(x, Q^{2}\right)\right]=2 S^{[\mu} P^{\nu]} g_{T}\left(Q^{2}\right) \\
\text { tensor charge } \\
\text { (not conserved) }
\end{gathered}
$$

- axial charge from C(harge)-even operator tensor charge from C -odd \rightarrow it does not take contributions from quark-antiquark pairs of Dirac sea
summary: evolution of $h_{1}{ }^{q}\left(x, Q^{2}\right)$ is very different from other PDF because it does not mix with gluons \rightarrow evolution of non-singlet object moreover, tensor charge is non-singlet, C-odd and not conserved $\rightarrow h_{1}$ is best suited to study valence contribution to spin
- relations between PDF's

$$
\begin{aligned}
& {[(+,+) \rightarrow(+,+)]+[(+,-) \rightarrow(+,-)] \equiv \mathrm{f}_{1}} \\
& {[(+,+) \rightarrow(+,+)]-[(+,-) \rightarrow(+,-)] \equiv \mathrm{g}_{1}} \\
& (+,+) \rightarrow(-,-) \equiv \mathrm{h}_{1}
\end{aligned}
$$

by definition $\rightarrow f_{1} \geq\left|g_{1}\right|,\left|h_{1}\right|, \quad f_{1} \geq 0$
$|(+,+) \pm(-,-)|^{2}=A_{++,++}+A_{-,--} \pm 2 \operatorname{ReA}_{++,--} \geq 0$
invariance for parity transformations $\rightarrow \mathrm{A}_{\mathrm{P}, \mathrm{P}^{\prime} \mathrm{p}^{\prime}}=\mathrm{A}_{-\mathrm{P}-\mathrm{p} . \mathrm{P}^{\prime}-\mathrm{p}^{\prime}}$
$A_{++,++}=1 / 2\left(f_{1}+g_{1}\right) \geq\left|A_{++,--}\right|=\left|h_{1}\right| \rightarrow$ Soffer inequality valid for every x and Q^{2} (at least up to NLO)
h_{1} does not conserve chirality (chiral odd)
h_{1} can be determined by soft processes related to chiral symmetry breaking of QCD (role of nonperturbative QCD vacuum?)

in helicity basis cross section must be chiral-even
hence h_{1} must be extracted in elementary process where it appears with a chiral-odd partner
further constraint is to find this mechanism at leading twist
how to extract transversity from data?

how to extract transversity from data?

the most obvious choice: polarized Drell-Yan $\quad p^{\uparrow} p^{\uparrow} \rightarrow l^{+} l^{-} X$

Single-Spin Asymmetry (SSA)

$$
\begin{aligned}
A_{T T} & =\frac{\left.d \sigma\left(p^{\uparrow} p^{\uparrow}\right)-d \sigma\left(p^{\uparrow} p^{\downarrow}\right)\right]}{d \sigma\left(p^{\uparrow} p^{\uparrow}\right)+d \sigma\left(p^{\uparrow} p^{\downarrow}\right)} \\
& =\left|\mathbf{S}_{T_{1}}\right|\left|\mathbf{S}_{T_{2}}\right| \frac{\sin ^{2} \theta \cos \left(2 \phi-\phi_{S_{1}}-\phi_{S_{2}}\right)}{1+\cos ^{2} \theta} \frac{\sum_{f, \bar{f}} e_{f}^{2} h_{1}^{f}\left(x_{1}\right) \bar{h}_{1}^{f}\left(x_{2}\right)}{\sum_{, f} e_{f}^{2} f_{1}^{f}\left(x_{1}\right) \bar{f}_{1}^{f}\left(x_{2}\right)}
\end{aligned}
$$

but $=$ transverse spin distribution of antiquark in polarized proton \rightarrow antiquark from Dirac sea is suppressed
and simulations suggest that Soffer inequality, for each Q^{2}, bounds $A_{T T}$ to very small numbers ($\sim 1 \%$)
better to consider $\quad p^{\uparrow} \bar{p}^{\uparrow} \rightarrow l^{+} l^{-} X \quad$ (recent proposal PAX at GSI - Germany) but technology still to be developed otherwise need to consider semi-inclusive reactions

alternative: semi-inclusive DIS (SIDIS)

dominant diagram at leading twist

in SIDIS $\left\{\mathrm{P}, \mathrm{q}, \mathrm{P}_{\mathrm{h}}\right\}$ not all collinear; convenient to choose frame where $\mathbf{q}_{T} \neq 0$
\rightarrow sensitivity to transverse momenta of partons in hard vertex
\rightarrow more rich structure of $\Phi \rightarrow$ Transverse Momentum Distributions (TMD)

