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1.   Calcolo delle probabilità
2a. Statistica frequentista
2b. Statistica bayesiana
3.   Likelihood
4.   Fondo e segnale
5.   Metodi Bootstrap
6.   Unfolding
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Statistics  1.

Frequentist approach

Bayesian approach

Statistics I
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Frequentist 
confidence
intervals
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x1
x2

x

q

q1

q2

x= x1 q1<q<q x= x2  q<q<q2

x

q1< q <q2 when   x1 < x <x2

True value

Possible
interval

CL
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NEYMAN  INTEGRALS
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When the following property holds

One can integrate along q in a “bayesian” way
(see any elementary textbook)

Bootstrap property
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Estimation of the sample mean

since

Due to the Central Limit theorem we have a pivot quantity 
when N>>1

Hence:
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In 20 drawings 5 successes have been obtained
Which is the estimation of the probability with CL=90%?

Frequentist result:

Bayesian result:

p=[0.117, 0.434]

p=[0.133, 0.437]

x=5, n=20, CL=90%
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Elementary example II

There is a large number of marbles, which are either
white or black, and you wish information on the white
fraction, m.
You draw a single marble, and it is white. What is the 
fraction m with 90% of confidence?

Classical:

p1 = 1 – CL = 0.1    m ≥ 0.1

Bayesian:

flat prior p2
1 = 1 – CL = 0.1    m ≥ 0.316

p1 = 1 – CL = 0.1    m ≥ 0.100

p3
1 = 1 – CL = 0.1    m ≥ 0.464

1/m prior

m prior



37

Bayesian coin tossing
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wrong

Last Informative
Prior  (LIP)
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Uniform
Jeffreys’
Prior
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The Gaussian Case

That is... Put in your analysis your KNOWLEDGE
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The Gaussian Case
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Quantum Mechanics: 
frequentist or bayesian?
Born or Bhor?

dx
2||

The standard interpretation is 
frequentist
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Use of the
likelihood principle 

in physics

Statistics II
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Bayesians
vs
Frequentists

+
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Why ML does work?

hypothesis observation
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The other branch
of Statistics:
Hypothesis Testing
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P(H0) P(H1)

ab

1 b1 a

exp value

power

... in Physics
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A Milestone:
the Neyman-Pearson
theorem

)

Likelihood Ratio
Test
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A Milestone:
the Neyman-Pearson
theorem: limitations
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Likelihood 
Ratio

ni from MC
samples!
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Steps of the likelihood ratio test

Determine the ratio si/bi for each bin
(model + MC simulation)

Find lnQ pdf simulating ni from background
(with the same experimental statistics)

Find  lnQ pdf simulating ni with signal
(with the same experimental statistics)

Calculate the lnQ for the data ni

and make the test
ni
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The Higgs at LEP in 2000
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Three selections of the
reconstructed Higgs mass
of 115 GeV to obtain 
0.5/1/2/ times as many
expected signal as
Background above 109 GeV

LEP real data
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Steps of the likelihood ratio test

Determine the ratio si/bi for each bin
(model + MC simulation)

Find lnQ pdf simulating ni from background
(with the same experimental statistics)

Find  lnQ pdf simulating ni with signal
(with the same experimental statistics)

Calculate the lnQ for the datum ni

and make the test
ni
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MC toy model

si red
bi yellow

Crosses: MC data, 
Background only

ln(1+s/b)  plot

1,2,3,4,5,....n
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MC toy model

si red
bi yellow

Crosses: MC data, 
Background + Signal

ln(1+s/b)  plot

1,2,3,4,5,....n

(in blue is the previous one
with background only)

mH=115 GeV
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maximum
likelihood
zone



87

3s effect!
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Conclusions
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ALEPH
DELPHI
L3
OPAL 
2003

mH ≥ 114.4 GeV/c2 CL=95%

mH

5%
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Bayesian
Hypothesis
test
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Conclusions

•The likelihood ratio is the maximum power test, that
maximize the discovery potential

•The maximum likelihood (ML) is the best estimator in 
the case of parametric statistics problems

•The likelihood ratio permits to match toghether
different experiments and to realize the Neyman 
frequentist scheme
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MC samples

background

signal

With a Higgs 
mass of
120  GeV the 
data are not 
able to
discriminate 
between the 
hypotheses

With a mass of 116 GeV
10% of the background
only experiments give
the observed signal

With a Higgs mass of 110  GeV the data are
consistent with the background only hypothesis
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LEP real data



Signal over 
Background in Physics

How to count 

Some case studies

Statistics 4
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.. From the Curtis Meyer review  (Miami 2004)
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pKKΛ(1250)Kpγ  

nKKKnγ  

PRL 91(2003)012002
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Is it 
convincing???

4.6 sigma!
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This is the 
most common

Unclear
(to me)

Recently 
Proposed
(hypothesis test)
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PRL 91(2003)012002
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Photoproduction on a deuterium target
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HERMES : 27.6  positron beam on deuterium

3.47414574/74 
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119No 5s effect!!
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Bayes 
formula
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The best 
one !!!

The non parametric
Sampling methods
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Non parametric Bootstrap
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w.r.t. the
true mean
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Bootstrap of B1 and Bi data

Trimmed mean 50%
Correlation between measurements
Weighted resampling Int(1/s2) times
The error on measurements is not considered

Scope of the analysis: to test wether errors only or the 
data itself are unreliable
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Results

Bootstrap:

Standard analysis:

1.3
6.03.1

3.818.85

22






9.3
3.05.1

6.806.86

22






Some data are
unreliable
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Useful when the two samples are 
signal and background....
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The dual Bootstrap

Fix the background on one sample and 
calculated the peak signal
with another sample to avoid biases !!

Repeat on bootstrap samples (dual bootstrap)



148



149

Conclusions
•Poissonian Counting: most of the tests 
do not consider the error on background and
overestimate the signal. Often true (mean) values
and measured values are improperly confused.

•Binomial counting: a general theory there exists
and should be applied. 

•The errors should be calculated by MC methods
and the procedure checked with MC toy models

•Nonparametric Bootstrap methods should be used
also by physicists
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Some problems 
with frequentism 
and their cure
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Neyman’s prescription:

Before doing an experiment, for each possible
Value of theory parameters determine a region of data that occurs
C.L. of the time, say 90%.

After doing the experiment, find all of values of the theory parameters
for which your data is in their 90% region. This is the confidence interval.

Notice that there is complete freedom of choice of which 90% to choose.
This will be the key to our solution.

We restart from the 
Neyman construction

True value Observed value
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1.28 s
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When µ =2  there is only 85% coverage!
Due to flip-flopping (deciding whether to use an upper limit 

or a central confidence region based on the data) 
these are not valid confidence intervals.

85%
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When no events are counted,
an experiment with an expected background of 
3 events measures 
a negative m upper limit for the expected value
of the counts!!
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Bayesians recall
the date
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The method is officially recommanded from PDG 1998
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The old one!
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R

g

x1 x2

x1 x2

m > 
0
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(1) This approaches the central limits for x >>1.
(2) The upper limit for x = 0 is 1.64, the two-sided rather than the one-sided limit.
(3) From the defining 1937 paper of Neyman, this is

the only valid confidence belt, since there are 4 requirements for a valid belt:
(a) It must cover.
(b) For every x, there must be at least one µ.
(c) No holes (only valid for single µ).
(d) Every limit must include its end points.

From Feldman notes:
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The sensitivity
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mtrue = F ( )
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The acceptance zone for no oscillations (Hypothesis)

if the experiment
falls here, we
can reject the
hypothesis with 
90% CL
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)2

gives the highest probability for the physically allowed values

Unified Approach (FC)



here the
cuts are
Taken into
account

-
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This is a really
a good result!
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Some frequentist problems III
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1
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Frequentism, Bayes or likelihood ratio??



194

Draw the conclusions by yourself .....
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classical (c)

FC unified
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1.   Calcolo delle probabilità
2a. Statistica frequentista
2b. Statistica bayesiana
3.   Likelihood
4a.  Fondo e segnale
4b. Metodi Bootstrap
5.  Approccio Unificato
6.   Unfolding
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auxiliary variable

The jacobian is

From the general theorem one obtains

by integrating on the auxiliary variable

hence

which is the probability density

Folding
theorem
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Convolution
theorem

For independent variables:

when Z is given by the sum

we have

and we obtain

When X1 and X2 are independent, we obtain 
the convolution integral

In physics

( d instrument function, f signal)
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Uniform*Gaussian
When where

one has immediately
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values

n= R*m+b 
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original

Poisson
statistics

Gaussian
smearing

Fourier
(un)restored
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original Poisson
statistics

Gaussian
smearing

Fourier
restored
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original

Poisson
statistics

Gaussian
smearing

Fourier
(un)restored



209

original Poisson
statistics

Gaussian
smearing

Fourier
restored
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original

Poisson
statistics

Gaussian
smearing

Fourier
(un)restored
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Image
restoration
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Explanation:

The smeared 
distributions of two input 
distributions cannot be 
distinguished if they 
agree on a large scale of 
x but differ by
oscillations on a 
“microscopic” scale much 
smaller than the 
experimental resolution

or 

to increase the DoF by using

a parametric model

)'|()()|( mnmmn PPP 
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La PET: tomografia a positroniPET: positron emission thomography
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1)( mP

The frequentist
assumes
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Regularization
terms
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Regularization
parameter
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What is
MaxEnt ???
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The iterative 
principle

)

(26)
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The iterative 
principle
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The iterative 
Principle
without
best fit

Good!
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The 
iterative 
Principle
without
best fit +
smoothing
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The 
iterative 
Principle
without
best fit

Bad!
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The iterative 
algorithm +
best fit
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The iterative 
algorithm +
Best fit
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The iterative 
algorithm +
best fit +
regularization
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The iterative 
algorithm +
best fit +
MaxEnt
regularization
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The iterative 
algorithm +
best fit +
Tichonov
regularization
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The iterative 
algorithm +
best fit +
Tichonov
regularization
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The iterative 
algorithm +
best fit +
Tichonov
regularization
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ATHENA experimental set-up
ATHENA apparatus

Silicon micro

strips

CsI

crystals

511 keV 

511 keV 




 Charged tracks to reconstruct antiproton 

annihilation vertex.

Identify 511 keV photons from e+-e-

annihilations.

Identify space and time coincidence of the 

two  with ± 5 mm and 5 ms resolution

(Probability of a random coincidence:

0.6% per pbar annihilation without 

considering detection efficiency)
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From the ATHENA detector

Pbar-only 
(with electrons)

x

y

cm
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antihydrogen !!!!!!!!!! FIRST COLD ANTIHYDROGEN PRODUCTION & DETECTION (2002)
M. Amoretti et al., Nature 419 (2002) 456
M. Amoretti et al., Phys. Lett. B 578 (2004) 23

SIGNAL ANALYSIS: 

opening angle
xy vertex distribution

radial vertex distribution

65 % +/- 10% of 
annihilations

are due to antihydrogen

between 2002 & 2004 
more than 2 millions
antihydrogen atoms
have been produced

that’s  about 2 x 10-15 mg
.. or .. 1000 Giga years for a gram

8
110

80
;5.6

190

80
;7.4

110190

80



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Cold Mix data
Hbar (MC) BCKG

(HotMixData)

Pbar vertex XY projection (cm)

x = 0.65 ± 0.05

x Hbar             +  (1-x) BCKG         =                      Cold Mix

Hbar percentage

Annihilation vertex in the  trap x-y plane

ML  Fit Result
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Iteratve best fit method

The vertex algorithm resolution 
function is gaussian with

mm3s

The 2D deconvolution reveals
two different annihilation modes

Cold Mix

exp background

Cold Mix data
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The iterative algorithms +
best fit + regularization

• iterative algorithms are used in 
unfolding (ill posed) problems 

• they need a Bayesian regularization term

• when there are degrees of freedom,one
can use a best fit of a signal+background 
function to the data 

• in this case there are no Bayesian terms
(pure frequentist approach)
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