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What is Statistics ?

e a problem of probability calculus: it
p = 1/2 for having head in tossing
a coin, what is the probability to
have in 1000 coin tosses less than 450
heads?

e the same problem in statistics: if
in 1000 coin tosses 450 heads have
been obtained, what is the estimate
of the true head probability?

Statistical error: s ~ o

14 o =500.0 £ 15.8 ~ 500 + 16 = [484, 516
r £ s =450.0 + 15.7 ~ 450 + 16 = [434, 466]



Physics and Statistics

e Higgs mass
(PDG 2000):

m > 95.3 GeV,CL = 95%

e |V mass:

myy = 80.419 4 0.056 GeV

These are
confidence intervals



The hystorical path

FREQUENTISTS

BAYESIANS
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Thomas Bayes writes
a fundamental paper.
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The J. Neyman frequen-
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of Pearson.
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Frequentist teaching
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the bayesian works of
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(Geneva 2000)
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Statistics

We have 2 inferences

e parameter estimation: to estimate
p from 1000 coin tosses

e hypothesis testing: in in two exper-
iments of 1000 coin tosses 450 and
600 tosses have been obtained, how
much is probable that the two ex-
periments use two consistent coins?

Parametric Statistics: the probability
depends on 6:

E(0) = (S, F, By)
corresponding to a density
P{X € A} = |, p(z;0)dx



Physics and Statistics

e Higgs mass
(PDG 2000):

m > 95.3 GeV,CL = 95%

e |V mass:

myy = 80.419 4 0.056 GeV

These are
confidence intervals



Frequentist Confidence
Intervals

One (Neyman, 1937) starts from
probability calculus

Lr2p(r;0)de = CL

and the procedure is repeated

CL =90%

for all the possible 6 values



Frequentist
confidence
intervals

It is possible to show: that
X € [$1,;'Ug] iff © € [91,92]

Since
P{X S [mhmﬁ]} — CL

then
P{@ - [91192]} =CL
Fundamental Neyman result (1937) 10
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Frequentist Confidence
Intervals
mathematical definitions

If 77 and 15 are two statistics, the in-
terval

[ =T, T5)
is a confidence interval for 6, with 0 <
C'L < 1 confidence level, if, for all # € O,
the probability that / contains 6 (cov-
erage) is C'L:

P{Ty<0<Ty) =CL .

If 77 e T; are discrete variables, the con-
fidence interval satisfies the minimum
overcoverage

P <0<Th} >CL .

Note: [17,7,] are random variables, the
¢ parameter is fixed

12



Frequentist C.I.
right and wrong definitions

RIGHT quotations:

e CL is the probability that the random in-
terval [T}, Ty| covers the true value 6;

e in an infinite set of repeated identical ex-
periments, a fraction equal to CL will suc-
ceed in assigning 6 € [, 0];

e if 6 ¢ [01,6,], one can obtain {I = [#;, 6]}
in a fraction of experiments <1 — ('L

o if H,: 0 ¢ [61,6,] the probability to reject a
true H, is 1 — C'L (falsification).
see upper and lower limits estimates.

WRONG quotations

e CL is the degree of belief that the true
value is in [6,, 6,

*® P{H € [9193]} =CL
(6 is not a random variable!)

13



™. ™S NEYMAN INTEGRALS

1 2
true value /J \_ measured value

f p(z;0))dzr = ¢ f_m plz;0s)dz = ¢

where

f € [lf}hf;}g] , 1 — {{'51 + Cg) =CL

MC techniques can be used: grid over ¢ to find

the values ¢, and 0, satisfying these integrals
Important:

fy p(6;2)d8 = CL
WRONG!!!



When the following property holds

1 — [ p(z:0)dz = [? o p(6; ) db

1 — F(xz;0) = F(0;x)

Bootstrap property

L plz; 1) de = ¢ fmmp(-ﬁ? 0y) dzx = co
cL=lp .= 1—fg ... = [ p(6;z)do
o=/l ... =1 ... = .[52 p(6;z)do

One can integrate along 6 in a "bayesian” way
(see any elementary textbook)

CL=1-c¢|—cy = J2p(6; ) d6



Pivot quantities

Avoid the calculation of the integrals
[ip(x;0)dz = ¢

If Q(z;0) is pivotal, P{Q € A} is inde-
pendent of 6. Example:

Q=(X—-80)~N(0,0°
Method:
o find P{ <Q < ¢} =CL;
e invert the equation:
Q(z;0)=q— 0=T(z;q)
e Then:
Pl < Q< g}t =P{T1 <6 <Tr} =CL

Pli-0 < X < o} = P{-0 < X—p < o)
=P{X-0<pu<X+0}

16



sample space

probability contour

parameter space

confidence contour

>
=1

Fig. 2. Two parameter classical confidence limit for an observation xq s, The
dashed contours labeled with small letters in the sample space correspond to
probability contours of the parameter pairs labeled with capital letters in the
parameter space
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Probability estimate
big samples

Var[F] = Vaﬂj(] = Np%z_ a8 p(lﬂ_r :

pivot quantity for N > 1:
I —p
o|F]

which can be inverted:
F —
P{ P

o[ F]
If N > 1 then:

T =

~ N(0,1)

< 1] = P{F—oF < p < F+0o|F|}

o[ F] = \lp(lﬁ—rp) - Jf(lj\?r /)

p:fi\[m?;f) CL ~ 68%

18



small Sr;.imples

... first difficulties ....
there are no pivot quantities:

n (n o
D k]il?;f(l —p)" = ¢,
\

- "(n k n—k
)3 L—p)" " = ¢y .
k:om\k‘]pz( Pz) 2

Symmetric case: ¢, = ¢, = (1 - CL)/2 =
/2.
When z =0, z=n,c=c=1—-CL:

T

r=n — p; =1—-CL,
r=0= (1—p)"=1-CL.

all the attempts had success:
p=VvV1-CL pe€lp,]]

110 Success:

p=1—-vV1-CL pel0,p]
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Upper and lower limits

r events are observed:

CL Ll 1crice
'.'I' i I 4
o
il P i
C . f I 1 1 | |
up, i}* o np,
limite inferiore pl = P limite superiore p = p2

e lower limit p € [py,1]: if p < p;, one
can observe at least = events, but in
a fraction of experiments < 1 — CL.

Ifz=n,p!=1-CL;

e upper limit p € [0,ps]: if p > p,, one
can observe up to r events, but in a
fraction of experiments <1 — CL.

if =0, (1—po)"=1—CL.

21



Poisson Limits
k ;

C'Cl o ﬂ}' o
Z “Lexp(—m) =c1, > T2 exp(—p2) = ¢,

symmetric case: ¢; = (:2 = (1—-CL)/2.
Upper Limits to the mean number of
events having obtained r events:

k

Z Eexp(—,u,g) =1-CL .

For z = (], 1,2, where pus = u
et =1-CL,

et +pue ™ =1-CL,
12
e "+ pue ™+ ?e_’“’ = 1-CL
90% 95%
2.30 3.00

3.89 4.74

90% 95%
10.53 11.84
11.77 13.15
5.32 6.30 13.00 14.44
6.68 7.75 14.21 15.71
7.99 9.15 |10 15.41 16.96
9.27 10.51|11 16.61 18.21
When p > 2.3, one con observe no events but
in a number of experiments < 10%.

[ | ST U N T T e
O oo 3 B




Estimation of the sample mean

[l N
Var[M] = Var N z X;| = e g Var[ X;]
since Var[X;]| = o? Vi,
B N 5 .-:r'?
Var[M| = e 1Elaz:r ENU N

Due to the Central Limit theorem we have a pivot quantity
when N>>1

u— M
o/vVN

~ N(0,1)

Hence:
P

(N > 20 — 30) :

i/ﬂ } P{ﬂf—%gggﬂer\/%}

a S

—Mm*t——u=m=x
I H N

C'L ~ 63%
VN ’

23



The Bayes formula

P(Bi|A)P(A) = P(A|By)P(B)
if B; are disjoint and cover the set S,

P(4) = ¥ P(A|B)P(B)

then P(Bj;|A) can be written as:
P(A|By)P(By)

P(Bi|A) = - ,
> P(A[B)P(B;)

P(A)>0 .

Example trigger problem

A p-m trigger has (7)) = 0.05 e g(u) =
0.95. If the beam is 90% 7 and 10% u
find efficiency and enrichment factor

P(T|p)P(p)
P(u|T) =

R P

= 0.95-010+0.05-0.90 014 078

efficiency = 14%, enrichment = 6.8 24




Bayesian use of
Bayes formula

An attempt to solve the trigger prob-
lem without knowing
the beam percentages ...!!

The Bayes formula is employed start-

ing from
subjective probabilities
P(data|Hy)P(H
P(Hydata) = -2 98l H) PUTL)
i=1

an important step,
P(Hﬂdata) — PH_I(H,%)

iteration:
P E HP, (H
.z P(En‘Hi)Pn—l(Hi)

25



e frequentist approach:

subjective probabilities
for Hypotheses

never
are assumed.

P(H|data) NO!I

26



The gambler problem
Bayesian approach
P(Win|C) =1 P(Win|H) = 0.5

Problem: to find the probability that the gam-
bler is cheat, as a function of the number of
consecutive wins {IW, }

P(H) = P(H|W,), P(C)= P(C|W,) P(H)=1-P(C)

Iteration:
P(W,|C) P(C|W,_1)

P(C|\W,) = .

W) = B, 10) PCTW, ) + POV, H) [ = P(CTW, )]

that is

P(C|W,_1)
P(C\W,) =
CWn) = B, ) + 0500 — PO, )
P(C)/n|5 10 15 20

Baves: 1% 24 91 99.7 99.99
AYes: gor 63 98 99.94 99.998
50% |97 99.9 99.997 99.999

27



The gambler problem
Frequentist approach

Let us suppose 15 cosecutive wins

Hypothesis testing:
The null hypothesis H, (honest player) gives a
significance level (p-value in this case)

0.5 = 3.05107°

The probability to be wrong discarding the hy-
pothesis is less then 0.003 %.
The player is cheat.

Cheat probability estimation:
with n = 15 and CL = 90% the probability is

p=(0.1)"" = 0.86 .

With a “cheat probability” p < 0.86 it is possi-
ble to win for 15/15 times, but in a percentage

of plays < 10%
0.86 <p<1 C'L = 90%

28



The gambler problem
Frequentist approach

Black: hypothesis testing
Red: probability estimation

These conclusions are independent of any a
priori hypothesis!

p=0.86
p=05 g @

0.10

/310

29



Marginal and conditional
densities

probability product:
p(z,y) = py(y) p(zly) = px(z) p(y|z)

for independent variables:

p(zly) =px(z) , pylz) =pv(y) ,

30



Bayes for the continuum

p(z,y) = py(y) p(z|y) = px(z) p(y|z)
hence
_ plylz) px(z)
plely) = py(y)
that is

[l ylw m( )d&?
Bayesian step:

p(x m Pu(pt)

»

PUE) = | (s 1) () d

that is
likelihood x prior

P\ L) = —
( ) normalization

The prior /

Pu(p)

that is the subjective probability as-
signed to p, is NEVER used by fre-
quentists

31



Bayesian Interval estimate

Degree of belief on i for a measured z:

e L(z, p) pu(p)
p(p; x) [ L(z, 1) pu(pe) dp

Estimate:
JLAS [#-13 xug]
with degree of belief

142 + o L
fm p(p; x) dp = degree of belief

e one integrates over p considered as
a random variable

e this coincides with the frequentist
result if the prior p,(x) is uniform
and the property

I = F(p;z) = F(z; p)
holds

e but the interpretation is different!

32



Bayesian coin tossing

p*(l— p} " pp(p)

p(p;n, )
f p*(1— “pp(p) dp
With uniform prior,

pp(p) =const 0 <p<1
Recalling the [ function:

z!(n —z)!
Ti ﬂ?d _
b’ P~ 1)
one obtains the degree of belief of p
(n+1) _

p(p:n, ) R (1—=p)
T +1
p) = n+1

33



Bayesian Interval estimate

p € I-plapi]
with degree of belief

P2 (ﬂ,—l—l)l T n—r
1 — d
S p——TL (1—p)""dp

T =n:
p(p;z=n)=(n+1)p", F(p) = (n+1)p"dp = pitl
The 90% bayesian lower bound

0.10 = p"™' — p = (0.10)V/(*+D)
r = 0:

ppiz=0,n) = (n+1)(1 —p)",
F(p) = [f(n+1)(1 —p)"dp=1—(1—p)"*
The 90% bayesian upper bound
0.10 = p"™ — p=1—(0.10)/*+)

Frequentist — Bayesian
n—n+l
but with a different meaning !!!

34



Elementary example I

In 20 drawings 5 successes have been obtained
Which is the estimation of the probability with CL=90%?

Frequentist result: x=5, n=20, CL=90%

Zn:(rk]j plk (1- pl)n_k =0.05

k=n

Pi. Pz
N p=[0.117, 0.434]

i(::j p; (1- pz)n_k =0.05

k=0
Bayesian result:
P2
I p*(Ll—p)""dp P1. Pz
- =0.
[ p*@-p)™dp ”
0

What meaning??




Elementary example II

There is a large number of marbles, which are either

white or black, and you wish information on the white

fraction, p.

You draw a single marble, and it is white. What is the
fraction p with 90% of confidence?

Classical:

p1=1-CL=0.1 9”20.1

Bayesian:
flat prior p?;,=1-€C€L=0.1 > p20.316

1/uprior  py=1-C€L=0.1 > p20.100
W prior p3;,=1-CL=0.1 > p2 0464



Bayesian coin tossing

Bayes Theorem:

PO | D, Iy P(D|6,1)-P@ |

D is the data, | summarizes all the relevant information.
Assume a flat prior P(# | /) in a Binomial experiment: cast a

coin (p).

Bayes formula will update the information on p at each

experiment:
P(6¢ | noData,l) =
P& | H,T) o
P& | H H,I) o
P |HH,, T, I)

PO | nN.mT.I)

Po(0 | 1) =1
g

92

62(1 — )
6"(1 — )"



LOFANTAH 1TSS
Bayesian Binomial Inference
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The plots are the posterior density after each measurement. ("

Also shown the 68% Credible Intervals.
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The 3 event experiment I

A counting experiment registered 3 events
Find the estimate of u:

o

B -
P(J‘HF«)Z—,E ’
£

p=3++v3=[1.27,473], CL ~ 68%
wrong

2. standard (frequentist) physicist:
solves the equations

N 3 i
s Hlem_g16, v P2em_q16
r=3 I! a=l) T'

Numerically one obtains the interval:
pw=1[1.37,5.92] , CL=68%

3. Bayesian physicist:
solves the Bayes formula

. Wt :
Last Informative T pu(p)dp =0.68 ,  with

Prior (LIP) T pulp) =1, [;”1 — [ =0.16

T2
The equal tail Bayesian interval:

= [2.09,5.92]

39



The important identity holds:

4 L

j"}'

— -
e Mdy =e
! /

P(p) plot for z = 3:

DA

LaE

DL

il ] o

D2

R o

H

|| [V]=

0.BL

BAYES EQUAL TAIL INTERVAL

W= ﬁ =0.16

= [2.09,5.92)

.
0 k!
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Bayesian Interval estimate

3. Bayesian physicist:
solves the Bayes formula

u? :“’

po3) ¢ ﬁpﬂ( )dPi = (.68 , with

M H2

p.ﬂ(-‘u;) =1 LI 70 — f,u
The central Bayesian interval is:

p = [1.55,5, 15]

4. Bayesian physicist:
Bayes formula with p,(y) = 1/u, hence:

Uniforn;//, d(1/p) = du/p* fﬁm = fm = (.16
Jeffreys
Prior p(p;x) = [ L{p;x)pu(1/p) dp
o w1 |
s i g E ;{-JU, 068

The central Bayesian interval is:

= [1.37,4.64] 2



The 3 event experiment

Summary
method interval coverage
naif [1.27, 4.73] NO
Neyman [1.37, 5.92] 68%
Bayes, uniform p,(nx) |[2.09, 5.92] ? < 68%
Bayes, uniform p,(1/p)|[1.37, 4.64] ? < 68%

e Bayes with uniform p,(yx) gives the same
frequentist upper limit (5.92);

e Bayes with uniform p,(1/4) gives the same
frequentist lower limit (1.37);

43



The neutrino mass
...here Bayes helps!
An experiment with a Gaussian resolution of
o=33eV/c
measures the ., mass as:
m = —5.41 eV/c?

make the Bayesian estimate of m,,.
Bayes formula

plm: my., o) p,(m,
plmy,;m,o) = fpf[ My, 0) pu(1y)

m; my, o) p,(m,) dm,
Choosing the prior:

e define 0 < m, <20 —30 eV/c?

e define o, = 10 eV/c?

® test three functional forms:

1. uniform: p, = p,(m,)=1/30, 0 <m, <30

2. Gaussian:

9 S
Py = py(ma) = 5— exp[—m,/(207)]

e
3. triangular: p, = p;(m,) = ﬁ (30 —m,,),
0<m, <30eV/c?

44



The neutrino mass 11

For example, using the uniform p,(m,)

and o = 3.3, m = —5.41 ev/c%:
[ (m - mrszl 1
exp |— 5 —
(i m, &) = 20 30
4 pry Ty f3n N {m . mp)? 1 dm
o P 202 |30

one obtains, at 95% probability:

plm,, ; m=-3.41, g=3.3)

m,, i 39 eVic 2

e uniform: 0 < m, < 3.9 eV/c%
e Gaussian: 0 <m, < 3.7 eV/c%
<3.7eV/c.

“independent” of the prior!

e triangular: 0 < m

-

the ignorance!!!

Here the prior represent the knowledge, not




The Gaussian Case
That is... Put in your analysis your KNOWLEDGE

Assume that we have made a measurement of the mean of a
Gaussian variable and we have obtained: x4 + 4. The
posterior density, in the case of a flat prior is:

1
V 2moy

f(li'.ll | X1.01, ."t,) — E—{ﬁ—#}fzﬂﬁ?

If now we make another measurement yielding: x, + o5 the
posterior becomes:

N(u; x1,0%) - N(p; X, 03)
f—-:x:- N(IU, X1, '3_12:]' ' N(H }52.,55) dllu,

46



The Gaussian Case

A boring calculation leads to the following result:

1 (17273

fp | X1,01,%X2,02,lp) = —=
1.-’2?]'53
X X
7
Xa = T
A
> 1
T9a = (I
oz | o2

The most probable value of . is just the weighted mean.

a7



Conclusions

e don’t be dogmatic

e use Bayes to parametrize the
a priori knowledge if any, not
the ignorance

e in the case of poor a priori
knowledge, use the
frequentist methods

48



Quantum Mechanics:
frequentist or bayesian?
Born or Bhor?

1y [ dx

The standard interpretation is
frequentist

49



Use of the
likelihood principle
in physics

Statistics IT



Maximum Likelihood

Likelihood function:

L(ﬂ; E) — P($11,$21= --;ZF-ml;ﬂ)P(ﬂ?lzaﬁzzg --;ifmz;f") .

X p[::rlm L2ny ++y Lmn, 9} = 'ﬁl P(H}f_; 9) ;

the product covers
all the n values of the m variables X.

Log-likelihood:
L=—-In(LO; x)) = —El In (p(x;;0)) ,
Max L corresponds to Min L.
For a given set of
r=x,T,...,T,
observed values, from a
X=(X,Xs....X,)

sample with density p(x;6), the ML es-
timate 6 of @ is the maximum (if any)
of the function

maxe [LLH; :E\J] — IMaxg

Ell p(@:; 9}] = L(6; z)

51



Maximum likelihood

or, 9 Ll:Tl p(;; 9)]

88,#: Gﬁk =0
or
oL n| 1 Op(=;0)] o |
ooy, El ;ﬂ(ﬂ:é;ﬁi) 00 ] 0, (k=12....p).

e before the trial, the likelihood function L(6:
is x to the pdf of (X, Xo,... X,);

e before the trial, the likelihood function L(6:
is a random function of X;

52



e frequentist view: maximize the function

L(O; x)= i[l p(x;0), or In(L(O; x)) = -l-;ln (p(x;;0)) ,

or minimize
~2In (L(6; 2)) = —23_ In (p(x;; 0))
i=1
w.r.t the parameters 6.

e Bayesian view:
maximize the posterior probability

L(16) p(6)
POl2) = i ooy a  HEOPO)

e Bayes maximization updates the prior p(60)

e when the prior p(0) is uniform (constant)
technically the frequentist and the Bayesian
approaches coincide because both maximize
L(0; ) (but the meaning is different)

e Bayesian estimators are not independent of
the transformation of the parameters, the
frequentist ones are independent of them!

Bayesians
VS
Frequentists

53



Why ML does work?

hypothesis l l observation

____________________

osservazione X

The p(z;0) form
is fitted to data
by maximizing

the ordinates of the observed data -



Example

An urn with three marbles

p

®e® O (e

=1/3  p=2/3

An experiment with 4 drawings:

plz;n=4,p) =

4!
z!(4 — x)

pf(1—p)t*

x=0 x=1 x=2 x=3 x=4

p(z;4,p=1/3)
p(z;4,p =2/3)

16/81 32/81 24/81 8/81 1/81
1/81 8/81 24/81 32/81 16/81

The

P
p

likelihood estimate:
=1/3if0<z <1
=2/3if3<x <4

no maximum if z = 2

55



Example

In n trial r successes have been ob-
tained. Make the ML estimate of p.
Binomial density
L=—zln(p)—(n—a)In(l —p) .
Minimum w.r.t. p:
dLl r n—=x .x
——=——+ =0 = p=—=
dp p 1—p n
Make the ML estimate of p when z;
successes on n, trials and z, successes
on n; trials have been obtained.
Two binomials with the same p:

L=p"p2(1—p " (1—p" .
With logarithms:

L = —(z1+x9) In(p)—(n1—z1+n9—x3) In(1—p) ,
dL @) +x N (N1 +ng) —x1 — 22

dp p 1—p
I +— I

0

Ty — N9



Estimators

e Estimator of 6
If X 1s a data sample with dimen-
sion n of a m-dimensional random
variable X having p(X;f#) as a pdf,
an estimator is a statistics

To( X) = ta( X)
for which T : S — 6.

e Consistent estimator of ¢
lim P{|T,, — 0| <e}=1, Ve>0.

e Correct or unbiased estimator

(T,) =46, Vn

® The most efficient estimator
T, is more efficient than @), if

Var[T),] < Var|Q,], Vf8cO.
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Theorems on L(#; X)

The mean value of the Score Function is zero:

%,
(g5 P(X:9)) =0
The variance of the Score Function is the Fisher
information:

Var ;ﬁlnp[x 6‘)] = <(;; Inp(X;0) — <§9111P(X 9)))2)

= <(%lnp()( ﬁ?}r}EI(OJ

These remarkable relations hold:

I(0) = <(%lnp()( ﬂ)f) <(;]; 111p(X;0]> .

<(%1”L)> <(00%mp{x ”))3 <(%l“p)2>:”‘r@’

The Cramér Rao theorem:
If T, is an unbiased estimator

1 1
n <(%IHP{X;9))E> - nl(0)

Var[T,| >
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Binomial, Poisson, Gauss

Inb(X:p)=Inn!—In(n — X)) —In X!+ XInp+ (n— X)In(l — p)
Inp(X;p)=XInpg—InX!—p

lng(X;ﬂwJ):ln( 1 )_E(X_H)E

2mo 2 a
These are random functions.
d X n—-X X-—-np
—Inb(X;p) = — — =
Op (X:p) p l—=p p(l-p)
d X X —u
—hnp(X:pu) = ——1= ,
@a“ (X5 ) p p
X — 1 X —pu
—1 X:_ ) = —_— _—— f—
o ng(X;u,o) . ( J) p
according to {é%lnp(X; ﬂ)_} = (
Information:
1 . np(l — p) n
(») p*(1 — p)? ( P)) p*(1—=p)?  p(l—p)
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Golden results

. If T, is the best estimator of 7(), it
coincides with the ML estimator
(if any)

T, = T(é) .

. the ML estimator is consistent

. under broad conditions, the ML es-
timators are asymptotically normal.
That is (§— 0) is asymptotically nor-
mal with variance

1

nl(6)
. the score function dIn L/06 has zero

mean, n/(f) variance and is asymp-
totically normal

. the variable
2(In L(0)-In L(0)]

tends asymptotically to x*(p), where
p is the dimension of ¢
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InlL(6)
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likelihood

7~

I'1 =18 +:J|E~.a:‘f‘~H

2 st. dev

max

likelihood

mean / r.m.s.

— .
B68.3 % confidence

Fig. 18, Likelihood ratio limits (lett) and Bayesian limits (right)
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The other branch
of Statistics:
Hypothesis Testing
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..in Physi
P(Ho) P(H,) ~" 7%

true De?iqion
hypothesis Ho \ H,
H, correct|decision tyre I error
| F o Qv
no effect | good rejection | contamination
H, type ‘I error | correct decision power
8 1 — [ <
effect event loss good acceptance

If H, is the discovery, the maximum power
test maximizes the discovery probability, that
is the good acceptance
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When two simple hypotheses are given
Hy:0=286,, Hi:06=06,.
the most powerful test, for o given, is
L .
uesn )
L(61; X) ~

reject  Hy if {R(X)

9

)

A

P{RX) [Ho}

A Milestone:
the Neyman-Pearson
theorem

'/u

That is:
the best test statistics is R
or any random vartable T : R =y(T).

Likelihood Ratio
" Test
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e it holds for simple hypotheses

e for composite hypotheses like

HU : leﬂ, ggzb
Hl ) Ql#ﬂ, Qg#b

or
Hy : 9:{13
Hl 920&
the NP ratio
L(6|H
R (6] Ho)

ma}i[ﬁ'e@ﬂL(Q'Hl)

is optimal, but only asymptotically

(theory is complicated!!)

e if H; has r free parameters more than
H,, then

—2In R ~ x*(r)

A Milestone:
the Neyman-Pearson
theorem: limitations
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The powerful LR test is used usually on his-
tograms with N, channels:

é ](.53 + b; )”1 € —(si+bi) /nz Ne
— S = S; .

@= 1,24 b e=bi /! o i§1 ©
where n; is the number of observed events s; O
and b; are the expected signal and background Q
events, b, and s, are obtained via MC

One obtains easily:

In@ = —Sit + anln(1+b)

i=1

Likelihood
Ratio

Usually one compare the quantity
—21InQ ~ x*> (asymptotically)

obtained experimentally (n; = contents of the
experimental bins) with the background (n; =
b;) and the signal plus background (n; = s; + b;

hypotheses. In this way, for an established

signal to noise ratio, one performs the most n; from MC
powerful test, maximizing the signal discov- SGf\'\plCS'
ery probability, taking into account not only :
the global number of the events, but also the 74

shape of the distributions (see LEP data).



Steps of the likelihood ratio test

Ne 8-
In Q — _S[m_ + Z T In (J. -+ %)
i=1 i

Determine the ratio s./b; for each bin
(model + MC simulation)
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The Higgs at LEP in 2000

On 3 November 2000 in a seminar at CERN the LEP Higgs working group pre-
sented preliminary results of an analysis indicating a possible 2.9 observation
of a 115 GeV Higgs boson [1]. Based on this analysis the four LEP collabora-

tions requested the continuation of LEP to collect more data at /s = 208 GeV.
However, the arguments presented by the LEP collaborations did not convince
the LEP management and in retrospect, it turned out that the LEP accelerator
turn-oft date of 2 November 2000 ended 1ts eleven years of forefront research.

enough. However, the statistical arguments presented by the LEP Higegs working
group were not based on these distributions, but rather on a sophisticated, though
heautiful statistical analysis of the data. Two years after the event, when the last
analysis of the LEP data indicated that_the significance of a Higgs observation in
the vicinity of 115 GeV went down to less than 2a [2], it becomes apparent that

the LEP Standard Model (SM) Higgs heritage will in fact be a lower bound on

the mass of the Higgs boson. However, the LEP Higes working group has tanght
us powerful and instructive lessons of statistical methods for deriving limits and
confidence levels in the presence of mass dependent backgrounds from various
channels and experiments. These lessons will remain with us long after the lower
bound becomes outdated.




Available online at www.sciencedirect.com

SCIENCE @mnz:‘r-
PHYSICS LETTERS B

ELSEVIER Flymies Letters B 565 (2003) 81-75

wwwalsevier com locate pe

Search for the Standard Model Higgs boson at LEP

ATLEPH Collaboration !
DELPHI Collaboration -
L3 Collaboration®
OPAL Collaboration *

B . . &
The LEP Working Group for Higgs Boson Searches”
Feceived 7 March 2003; recoarvad m revised form 25 Apnl 2003; accepted 28 Apnl 2003
Editor: L. Foland:

Ahbstract

The four LEP Collaborations, ALEPH, DELFHI. L3 and OPAL, have collected a total of 2461 pl::u_1 of ete™ collision data at
centre-of-mass energies between 189 and 209 GeVV. The data are used to search for the Standard Model Higgs boson. The search
results of the four Collaborations are combined and examuned n a likehhood test for thewr consistency with two hypotheses:

the background hypothesis and the signal plus background hypothesis. The comesponding confidences have been computed as
functions of the hypothetical Higgs boson mass. A lower bound of 114.4 GeV/¢? is established. at the 95% confidence level, on
the mass of the Standard Model Higgs boson. The LEP data are also used to set upper bounds on the HZZ couphng for vanous
assumptions concermng the decay of the Higgs boson.

ie» 2003 Elsevier B.V. All nghts reserved.
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Expt E.n Decay channel | m,.. (GeV) In{l + s/b)

at 115 GeV
1 | ALEPH 206.6 4-jet 114.1 1.76
2 | ALEPH  206.6 4-1et 114.4 1.44
3 | ALEPH  206.4 4-jet 109.9 0.59
4 | L3 206.4 E-miss 115.0 0.53
5 | ALEPH 205.1 Lept 117.3 0.49
6 | ALEPH 2065 Taus 115.2 0.45
7 | OPAL 206.4 4-1et 111.2 (.43
8 | ALEPH 2064 4-jet 114.4 0.41
9 | L3 206.4 4-jet 108.3 0.30
10 | DELPHI 206.6 4-jet 110.7 0.28
11 | ALEPH 2074 4-jet 102.8 0.27
12 | DELPHI 206.6 4-jet 07.4 0.23
13 | OPAL 201.5 E-miss 108.2 0.22
14 | L3 206.4 E-miss 110.1 0.21
15 | ALEPH  206.5 4-jet 114.2 0.19
16 | DELPHI 206.6 4-jet 108.2 0.19
17 | L3 206.6 4-jet 109.6 0.18

Table 1: Properties of the candidates with the highest weight at my = 115 GeV. Table

is taken from [2].
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Steps of the likelihood ratio test

Ne 8-
In Q — _S[m_ + Z T In (J. -+ %)
i=1 i

Determine the ratio s./b; for each bin
(model + MC simulation)
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Figure 6: The separation between the Signal and the Background for various
Higgs masses 1s shown by their hikelihood p.d.f's.
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ground expectation [2].
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Conclusions

The broad minimum of the combined LEF likelihood
from my ~ 115 — 118 GeV which crosses the expectation for s4+b around myg ~
116 GeV can be interpreted as a preference for a Standard Model Higgs boson
at this mass range, however, at less than the 2o level. When the LEP Higgs
working group presented these results for the first time the significance was 2.9+
[1], and this relatively high significance generated a storm which unfortunately
turned out to be in a tea cup...

The ALEPH ohserved likelihood has a 3o signal-like behavior around mpy ~
114 GeV, which led the collaboration to claim a possible observation of a SM
Higgs boson [3]. This behavior originated mainly from the 4-jet channel and its
significance is reduced when all experiments are combined. No other experiment
or channel mdicated a signal-like behavior.
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1. the Bayesian refuses the concept of an ideal
ensemble of repeated, identical experiments;

2. the probabilities of the errors of I and II
kind are then replaced by the probabilities
of the hypotheses

test statistics parameters
Bayesian certain random
frequentist random certain

A BIG problem:

P(data|Hy)P(Hy)
x; P(data| H;) P(H;)

unknown!

P(Hg|data) =

A solution: the Relative belief updating ratio:
- P(Hy|data)  P(datal|H,)P(Hy)
- P(H,|data)  P(data|H,)P(H,)

e the R values help the model choice, but the
choice is subjective!!

R

e the P(H,), P(H,) priors are necessary

® o, B ,1— 3 are not calculated

Bayesian
Hypothesis
test
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Gravitational Bursts
(P.Astone, G.Pizzella,workshop (2000))

n. counts are observed in a time T
r, and r, are the background and signal fre-
quencies:

ns = rsl unknown , ny, = 131" measured

Relative belief updating ratio
with P(Hy) = P(H):

—(rs+ry)T [( 4+ )f]nc Ne
‘ B e Ts T'p)t —Ts
R(T_g:. Mg, Thy T) - e—'r‘g,'T' [TE]T]??IC T (1 " Tﬁ')

Ifn.=0
R=e"T

depends on the signal frequency only.
Arbitrary Standard Sensitivity Bound:

R=e"" =005 —r, =299 ~ 3

Rule: this is the sensitivity of the experiment

93



Gravitational bursts

24
10 / B ——— =5
________ n:]
\'I'u
VW ———— n=0
1 - III
L ,I
|
— 0.1 |I
|
|
— 0.01 \
| I| TS
0.01

Figure 1: ratio I for the poisson intensity parameter r in units

of events per month for an expected background rate r
event /month and for n = 0, 1, 5 observed events

T T\ e
e 'T'ST (1 + _S) , Ty = 1
L

Bayesian Conclusions:

= 1

e If "s< 0.1 the data are not relevant;

e r.> 20 is excluded by the experiment;
e if N=5 the most probable hypothesis is 94
Ty =4



Conclusions

‘The maximum likelihood (ML) is the best estimator in
the case of parametric statistics problems

*‘The likelihood ratio is the maximum power test, that
maximize the discovery potential

*The likelihood ratio permits to match toghether
different experiments and to realize the Neyman
frequentist scheme
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The LEF Working Group for Higgs Boson Searches / Physics Letters B 363 (2003 61-75
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From the n values z; of a Gaussian vari-
able, find the ML estimate of mean and
variance

Likelihood function:

— 5ty Tilzi—p)?

LEF=

1
L —
(lu’? U) ( ,-"Qﬂ_ U)n
The log-likelihood:
_.n NS Sy
‘E’(Ju: U) T +2 IH(Z?TU ) T 252 i:l(Ii _,'_L) !
Put the derivative =0:
oL 1
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Figure 3: Evolution of the event weight In(1 + s/b) with test-mass myg for the events

with the largest weight at my = 115 GeV. The labels correspond to the candidate

numbers in the first column of Table 1. The sudden increase in the weight of the

OPAL missing-energy candidate labeled “13" at mpg = 107 GeV is due to the

switching from the low-mass to high-mass optimization of the search at that mass.

A similar increase 1s observed in the case of the L3 four-jet candidate labeled “17”

which 1s due to a test-mass dependent attribution of the jet-pairs to the Z and 100
Higgs bosons. The Figure is taken from [2].
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Background in Physics
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Some case studies

Statistics 4



The case of Pentaquark

The pentaquark is a baryon with five valence quarks.
The clearest signature is that of a

vudds, S=+1

pentaquark, the unique baryon with positive strangeness.

The s antiquark cannot annihilate with the u or d quark
by the strong interaction.
Some models predict a mass around 1.5 GeV and a very
small width (~ 0.015 GeV)

The recent pentaquark saga began at 2002 PANIC con-
ference when Nakano measured the following reaction
on a Carbon nucleus

yn—=O"K - K Kn
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PENTAQUARK
neutron udd 2

MAM/"" | dn‘u‘w". — =S
. (4 u proton i —

u | \‘\ K
— .du
U'\’

proton
other particles

Before 2003 .... searches for flavor exotic

baryons showed no evidence for such

states. 1997: Diakonov, Petrov and Polykov use a chiral
soliton model to predict a decuplet of pentaquark
baryons. The lightest has S=+1 and a mass of

1530 MeV and expected to be narrow.
Zeit. Phys. A359, 305 (1997).



. From the Curtis Meyer review (Miami 2004)
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FIG. 3. (a) The MM¢ . spectrum [Eq. (2)] for KtK™ pro-

ductions for the signal sample (solid histogram) and for events

. from the SC with a proton hit in the 55D (dashed histogram).

The flf‘ST result (b) The MM, - spectrum for the signal sample (solid histo-
gram) and for events from the LH, (dotted histogram) nor-

PRL 91(2003)012002 malized by a fit in the region above 1.59 GeV /c*.

The neutron presence was detected by the MM, g+ k-

2 missing mass
(Zin B — Zfin Efin)

,| The yp — K7™ K™ p reaction was eliminated by direct pro-
B (Zin Pin =~ Zfin pfin)

ton detection.

The neutron was reconstructed from the missing mo-
mentum and energy of K™ and K.

The background was measured from a LI, target.
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FIG. 3. (a) The !"ﬂ‘ﬂx* spectrum [Eq. (2)] for KYK ™~ pro-

ductions for the signal sample (solid histogram) and for events

from the SC with a proton hit in the SS5D (dashed histogram).

(b} The MM ;- spectrum for the signal sample (solid histo-

gram) and for events from the LH; (dotted histogram) nor-

malized by a fit in the region above 1.59 GeV /c*.

012002-3
The background level in the peak region is estimated to
be 17.0 = 2.2 * .8, where the first uncertainty is the

error in the fitting in the region above 1.59 GeV/¢* and

the second is a statistical uncertainty in the peak region.
The combined uncertainty of the background level is

+2.8. The estimated number of the events above the
background level is 19.0 = 2.8, which corresponds to a

Gaussian significance of 4.6% 30 (19.0//17.0 = 4.6). s



The signal over background

There are two way to count in Physics experiments

e Poissonian counting
The samples are collected in runs of fixed time. The

background is evaluated with MC methods, with
blank runs, with sideband counting, etc

e Binomial counting The runs collect a total number
N; of events and N, of them pass the selection cuts
(tagging) or the triggers.

Signal and background have different probabilities
to pass these cuts

To avoid mistakes the notation is very important

e NV counts considered as a random variable
e n counts considered as the result of an experiment

e 1 expected value of the counting distribution (Bi-
nomial or Poissonian).



Poissonian counting
Fundamental theorem

Let’s count a Poisson variable N with mean )\ with a
detector of efficiency . The registered number of counts
n follows the distribution

—I\N I
T - € }" N'! n _ N—n
P(n|N)P(N) = N -n!(N—n]IE (1 —¢)

By using the new variables

e—)t — e—lee—itl—ej

m=N—n

AN — }"N—ﬂ}‘n = }‘m}‘n
one has

e—}n.a (}_‘E)‘-‘l E—A{I—E}Am(l . E:]m.
n! m/!

P(n|N)P(N) =

The number of counts n is still an independent Poisson
variable with mean \e!
(also the lost counts m with mean A(1 — <))
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{N = n} events are observed, that are supposed to come
from a distribution with expected value p, + p,, where

the expected amount of signal p, is unknown.

N A~ Hp
Hp ©
p(n, ) =
n!
n
pln, o+ ps) = (b ﬁ“ 2 e T
mn.
signal +~ background
background Wyt L.
\\\Hh

number of events

o =backg. SL
B = signal 1- CL

1—-3 =signal CL. or power of the test

(1)



signal + background

background

HE““&,Mb U+ M

Py i )

Péﬂ;ﬂb}
a < 2.8-1077 bo discovery
a < 1.3-107° 30 strong evidence
a < 2.3-107? 20 weak evidence
o = backe. SL number of events
B = siguaul 1-CL
1-p =signal CL. or power of the test
true Decision
Hypothesis Hy H,
Hy correct decision Type I error
l -« o
background good rejection false acceptance
H, Type II error Correct decision
signal + a 1-53

background false exclusion good acceptance

Discovery Probability or Discovery Potential (DP):
the power 1 — [ when the critical value n is decided
before the measurement and when p(n; u, + ;) is true. 110




Poissonian Signal detection

There are many formulas used for detecting a signal
over the background (30, 50, 60, and so on)
N = N; + N, are the registered counts

N-N N +N.—N N Xx—p _N-N, -0
— Ny NNy — Ny 5 T e o
VN+N, JN+N, JVN+N| © NN,

This is the r Uncloa
most common S, = N—m _N+Ny—py N,
| VHs VHs VHs (to me)
Sw = VN =iy = /Ny + Ny — iy Recently
Proposed

(hypothesis test)

Please take care of the notation: often u is exchanged
with N, and so on, the formulae are obscure and used

improperly!! 111
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The background level in the peak region is estimated to
be 17.0*= 2.2 * 1.8, where the first uncertainty is the

error in the fitting in the region above 1.59 GeV/¢? and

the second is a statistical uncertainty in the peak region.
The combined uncertainty of the background level is

+2.8. The estimated number of the events above the

background level is 19.0 = 2.8, which™sqrrespond a
Gaussian significance of 4.67150 (19.0/,PK0 = 4.6).

19 =2.6
after the ﬂf;r[, N '\/ 19 + 17 + 17
'V!I?af‘A
1 =2.9

J19 +17 +2.82
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FIG. 4 (color online). The nK ™' invariant mass spectrum in
the reaction yp — 7T K~ KT (n) with the cut L(:sﬁ'ﬂ_ =, 3 and
cosf® - < 0.6. 6% ot and 6% g+ are the angles between the 7T and
Kt mcsc:-ns and photon bca m in the center-of-mass system. The
background function we used in the fit was obtained from the
simulation. The inset shows the nK™ invariant mass spectrum
with only the cﬂsﬁ; = ().8 cut.
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The final nK+ effective mass distribution (Fig. 4) was
fitted by the sum of a Gaussian function and a background
function obtained from the simulation. The fit parameters
are Ng+ =41 =10, M = 1555 = 1 MeV/¢?, and I' =
26 + 7 MeV /c® (FWHM), where the errors are statisti-
cal. The systematic mass scale uncertainty is estimated to
be 10 MeV /c?. This uncertainty is larger than our
previously reported uncertainty [6] because of the differ-
ent energy range and running conditions and is mainly
due to the momentum calibration of the CLAS detector
and the photon beam energy calibration. The statistical
significance for the fit in Fig. 4 over a 40 MeV/¢? mass
window is calculated as Np//Ng. where Ny is the number
of counts in the background it under the peak and Np is
the number of counts in the peak. We estimate the signifi-
cance to be 7.8 = 1.0e. The uncertainty of 1.0e is due to




You need to understand your
background to claim a new
discovery!
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Photoproduction on a deuterium target

1

FIG. 2: Distribution in invariant mass of the prtas™ sys
tem subject to various constraints described in the text. The
experimental data are represented by the filled circles with
statistical error bars, while the fitted smooth curves result in
the indicated position and o width of the peak of interest.
In panel a), the PyTHIAG Monte Carlo simulation is repre-
sented by the gray shaded histogram, the mixed-event model
normalised to the PYTHIAG simulation is represented by the
fine-binned histogram, and the fitted curve is described in
the text. In panel b), a fit to the data of a Gaussian plus a
third-order polynomial is shown.
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HERMES : 27.6 positron beam on deuterium

TABLE I: Mass values and experimental widths, with their statistical and systematic uncertainties, for the &4 from the two fits,
labelled by a) and b), shown in the corresponding panels of Fig. 2. Rows a”) and b') are based on the same background models
as rows a) and b) respectively, but a different mass reconstruction expression that is expected to result in better resolution.
Also shown are the mumber of events in the peak No and the background Nu, both evaluated from the functions fitted to the
mass distribution, and the results for the naive significance N7 -“JE? and realistic significance N /dN;. The systematic
uncertainties are common (correlated) between rows of the table.

[

&t mass FWHM N2 1"-."3" najve Total signif.
[MeV] [MeV] in +20 in +2o signit. Ny 48N,
a 15270123121 22+5+2 T4 145 6.1a T&+ 18 430
a’jl 1527025 1+21 24d+5+2 KL 158 6.3 B3+ 20 4.2a
b 1528026121 10+5+2 56 144 4.7 M+ 16 370
b') 15278 £30+2.1 I e 52 4.2 340
Y [M=1528 £ 26(star) MeV
la=8 + 2(stat) MeV b}
60
s f | ﬁ ]l {
Wit J
20 [ *ﬂ‘ g N — N, Ny + Ny — N, N,
! U = = = = =
10 - vIN + N, VN + N v IN 4+ N
0 ' ' 117

1 1 1
1.45 1.5 1.55 1.6

1.65

1.7

M Tp) [GeV]

74/ [74+145+74 =4.3



N — N, Nﬁ—l—N Ng;, N,
VN+N, VN+N, VNFN,

S =

several alternative expressions for the signficance of
the peak observed in Fig. 2 were considered. The first
expression is the nalve estimator N2 /\/NF used in
Refs. [11, 12, 13, 14, 15, 16]. The mrrespundmg result 13
listed in Table I. Because this statistic neglects the un-
certainty in the background fit, it overestimates the signi-
ficance of the peak [29]. A second estimator that was used
in the analysis presented in Ref. [20], N>7/,/N27 4 N27,
rives a somewhat lower value, but mav still underesti-

mate the background uncertainty. A third estimate of
the significance 1s given by N, /dN,, where N, is now the
full area of the peak from the fit and 4N, 15 1ts fully corre-
lated uncertainty. This ratio measures how far the peak
15 away from zero in units of its own standard deviation.
All correlated uncertainties from the fit, including those
of the background parameters, are accounted for in dN,.

The results obtained with this expression are also given
in Tahle 1. 118




S tatl Stl CS Experiment  Signal Background Significance
£ = 8 Publ. &, & &L
1 vb Spring8 19 17 466 46 32 26
£y = 5 Spring8 56 162 4.4 3.8 2.9
2 = /s+6b SPAHIR 55 56 48¢ 7.3 52 43
3 CLAS (d) 43 54 520 5.9 44 3.5
£z = CLAS (p) 41 35 7.80 6.9 47 3.9
5+ 2b DIANA 29 44 440 44 34 27
v 18 9 6.76 6.0 35 3.0
HERMES 51 150 4.3-6.2¢ 4.2 3.6 2.7
Y 57 95 4-6g 59 47 37
ZEUS 230 1080 466 7.0 6.4 4.7
SVD 35 93 5.66 3.6 3.1 24
NOMAD 33 59 430 4.3 3.4 27
NA49 38 43 426 5.8 42 34
NA49 69 75 5.8¢ 8.0 58 4.7
H1 50.6 51.7 5-66 7.0 50 4.1

No b effectl 119



Poissonian Signal detection
When the background is well known people use
N —

N

Recently Bityukov and Krasnikov (2000) proposed

Sap = VN — /iy = /Ny + Ny — /1y
Proof: In gaussian approx (g > 10), the abscissa n
satisfies the equation
_ﬂ—ﬁ’vb_ n—NS—Nh

b= —— = :
v Ny v Vs + Ny

S =

which implies

n=+Ny(N, +N,) and t=+/N,+ N, — N, .

Therefore, one can define the statistic signal + background
— v N — back d
Sbs = VN = /N, * gm““\_ P (1 iyt 1)

with expectation value

(5b5>=m—\/ﬁ71

Pd!:ll.i I»lb)

number of events



Poissonian Signal detection
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Figure 1: Number N, of the signal events for S, = 5 (dotted line) and
Shs = 2.5 (full line) versus the number N, of background events. 121



Poissonian Signal Detection

ﬁ B—Nh — (‘Nrb + hr"")n e—Nh'l'a""ra — n = NS
n! n! In(1+ N;/Ny)
@ 1 b L b Sl L
Ly R
is chosen is varied

iy N
[ ) n is calculated /
the area [ . is calculated
stop when p=1-CL
Hi n Hg o
10 19 22 0.004
20 32 26 0.005
30 45 33 0.005
60 80 43 0.006
200 234 73 0.008
500 554 111 0.008

T o+ 233/ 2x233/ 0.010

Table 1: When the expected background value is p, if n events are observed, 122
jts is the upper limit of the signal intensity with CL = 99%.



Binomial counting: candidate
selection

A sample N; can be considered as an ensemble of signal
and background events:

Ni = Ns+ Ny

The measurement is a linear operator M that acts on
N, + Nj, and divides this sample into events that pass the
selection (the “yes” events N,) and events that do not
pass the selection (the “no” events N,).

Ny = Ng+ Ny=N,+ N,

(3) = (%)
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(3) =2 (5)

e is the efficiency on the signal events and b that on the
background:

NyH:ENﬁ ; NHSZ(I_E)NS

Nyp = bNy , Np=(1-0)Nyp,

Since

N, = N,,+ Ny =¢eN,+bN, .

Ny = Nps+Npp=(1—¢)Ns+ (1L - b)Ny

the M matrix becomes:
g b
M = _
( l— 1—256 )

124



The inverse of the measurement matrix is:

1 1—-b —b
_1_
M _E—b(s—l a) ’

When the knowledge of the € and b-efficiencies is achieved,

one can solve the general Measurement Problem (MP):

having measured N, and N, from a sample
Ny = Ny, + N,,, what are Ny and N7 :
(1—b)N, —bN, N, —bN,

Ny =

e—b  e—b
N, — (e = 1)N, + &N, _ N, — (1 — )Ny ZENf—Ny
e—5b e—b e—b
When e > band ¢, b < 1,
Ny

st?, Ny = Ny — N, .

The errors come from the binomial formula (X, is not

random):
_ 1
o[N,] = o[Ny] = — \/ N,(1— N,/Ny)
When there are more backgmund sources
b — by = Zbiwi , Wy = ZN} .
i i 125

Problem: when & ~ b the system is ill-conditioned!



| 5 sigma signal vs sample size |
1000
800}
6001 /
2 | /
aooff /
200} //

! RETT—
10° 10° 10° Nt
-'ﬁ";r,ﬁ (E _ b:] *'h"'r.ﬁ . . .
t = Figure 2: Number N, of the events that pass the selection at a 5-0 level
I r T T . ' u -
J[-'vb] \/ f\'y(l — -'R"y/ f\ff:] versus the sample size N; with a b-efficiency 1-107%.

_ N, — b > 5 for the bo discovery 3)
N \/ N,(1 - N,/N;) binomial case ’

If the b-efficiency is deduced from a background sample,
it must be considered as a random variable:

h— wb
N;
if the signal and background runs have the same N;:
N Ny, — Ny Ny, — Nyp

— U[Nh] — \/Ny(l — Ny},rhrt) n Nyh(l — Nyh/‘Nf) o ,,fNy + Ny_b )

where the last term is the well known S, result.

t
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Having found N, and V,, the percentage of signal in
the accepted events N, can be found with the Bayes Bayes
formula (used in a frequentist way, because P(S) is not

subjective) formu | qQ
P(S|T) = P(T|S) P(S)
~ P(T|S) P(S)+ P(T|B) P(B)

= N,/N; = percentage of events in the triggered sample
= Np/N; = percentage of background in the triggered sample

= & = probability that a signal event passes the selection

b = probability that a background event passes the selection

3
e
|

= probability that a selected event is the signal

N, — bN. £ N, eN
S|IT) = Yy L = 1—pt) =208
P = ey = (o) =

P(B|T)

_P(S|T) ’

Eb Nf -‘5‘ —3/2
o[P(H|S)] = sz\/N — Ny/N) = - NN

In summary,

= Nt b —a 127
P(S|T) ~ 1—b-—2 N, N3/2
(SIT) E—b( Ny) e—pb




The top quark discovery of
CDF

The CDF experiment claimed the op quark discovery
(Phys. Rev. Lett.74(1995)2626) with two different se-
lection methods of discriminating the signal

tt — WbWb
from background:

e SVX tagging: b jets identification by searching for
secondary vertices in the Silicon Vertex detector;

e SLT tagging: to search for an additional soft lepton
from semileptonic b decay

t&g Nt Ny £ % b% i?\,-'s/iﬁ\‘?i J\rfP(SlT)

SVX 203 27 4245 3.34+0.1 025707 225750

SLT 203 23 2042 7.6+0.1 0.2477;  13.2755

The error on N,;/N; from the standard formula is £0.06
for SVX and +0.18 for SLT, slightly underestimated.
To take into account the uncertainties on the efficiencies
(nuisance parameters) a grid MC is necessary
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The bootstrap method for
confidence levels

With fixed efficiencies we have the binomial/gaussian
distribution

| countratio | h1
Entries 1000000
= Mean 0.2585
80000 RMS  0.06157
70000
= | 0.258 +-0.063 I
60000
50000
40000
30000
20000
10000 - ‘
ﬂEl_L_L._l_l_”]||| I,I,I___J,I,l |,|]I‘Hlﬂllhllll||||||||||||||||||||||
0 01 02 03 04 05 06 07 08 09 1
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The grid method for confidence
levels

For each value of p = N,/N; a sample of 100000 events
is generated sampling randomly the ¢ and b efficiencies.

| Lower limit | h2
Entries 100000
O Mean 0.1967
[ RMS  0.06372
25001 0.194 '
2000 |—
1500 |—
C 0.258 + 0.077 - 0.064]
1000 —
500 |—
ﬂ_ [ | | Ll
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

130



The bootstrap method for
confidence levels

In this case also the approximate bootstrap method
gives the same result.
This method is called Parametric Bootstrap

| countratio | h1
Entries 1000000
~ Mean 0.263
14000[— RMS 0.0727
12000~ 0.258 + 0.076 - 0.066
10000
anun:—
EI]EII]:—
4nun:—
2000(—
n:' I T N
0 0.7 0.8 0.9 1
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The bootstrap method for BR

e A=15 Reaction A events in a N=200 event sample
e B=30 Reaction B events in a N=200 event sample

Standard error propagation for 95% CL

*(B)

: :
J(A/B)zl-%xg\/gﬁfug —~ =0.15 — [0.21,079], CL =95%

BJ

o=\ (1- 3)

Bootstrap methods:

e parametric bootstrap: the events A and B are MC-
sampled from two binomial distributions with N =
200 and p; = A/N and p2 = B/N;

e non parametric bootstrap: the events A and B are
sampled with replacement from two experimental
samples with N = 200 and A or B events = 1, the
others =0

Obviously, in this case the two methods give the same

result:
[A/B] € 10.24,0,86] , CL=9%

Are the published BR really all RELIABLE??
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The bootstrap method for BR

binomial BR h1 bootstrap BR h2
Entries 500000 — Entries 500000
Mean  0.5151 ! e
L \ﬂJ RMS  0.1580 _ ik b

N [ 0.24I 0.87

5000 5000

.|]-| ||||||||||||||||-|.-|'L.-|-_.|_|||| |_'|-||J‘|J|-|J||||||||||||-I|_I'l-|H.JI'|-I-_I||||
] 0.2 04 06 0.8 1 1.2 14 1] 0.2l 0.4 0.6 0.8 1 1.2 14
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Consider a sample X containing N objects. We need an
estimate of 6 as 6(X).

No model of the X distribution is known or considered
Statisticians have elaborated the following (non para-
metric) methods:

e Jackknife (Quenouille, 1949):
N samples are generated leaving out one element at
a time;

® Subsampling:
S resamples of dimension Np are created by repeat-
edly sampling without replacement from th
imental sample. Obviously one ha

e Bootstrap (Efron 1979):
S resamples of dimension Np are created by repeat-
edly sampling with replacement from the experi-
mental sample. Usually Ng = N is set.

e Permutation:
used in the test between two hypotheses, by resam-
pling in a way that moves observations between the
two groups, under the assumption that the null hy-
pothesis is true

These methods, familiar among statisticians, are prac-
tically not (yet) used by physicists (only 3 papers with
non parametric Bootstrap!)

The non parametric
Sampling methods

~

The best
one Il

/
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Non parametric Bootstrap

NORMAL POPULATION

unknown mean p

g
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unknown mean p

(c)

Bootstrap distribution



The non parametric

BOOTSTRAP

Consider a sample X containing N objects. We need an
estimate of ¢ as

0(X)
Using the Bootstrap sample, we obtain the estimator

0* = 0(X*)

The Bootstrap samples have expectation values 6* that
differ from the true one ¢ (bias), but ...
the Bootstrap approximates the distribution of

6—0
with the distribution of

o~

6* — @

obtained by resampling.

136



Limits of non parametric

BOOTSTRAP

Drawback: the Bootstrap samples are correlated.
Some important results on this:

e the sharing of the same elements in different sam-
ples reduces the variance s, of the (re)samples:

Sies —7 (1—

where p = Np/N in subsampli
ment;

g without replace-

e the sampling with replacement i
the variance of the (re)samples

bootstrap increases

res

e in many cases in the bootstrap the positive bias due
to the within sample correlation and the negative
bias due to the between sample correlation cancel

exactly
V1= pyp1=1
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Figure 4: The mean estimated error as a function of the number of samples.

Sampling was done |without replacement’
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The non parametric

BOOTSTRAP

When does the Bootstrap work?

For the consistency of the method, the reliability must
be Bootstrap-checked, through the Bootstrap samples
themselves!

The important checks are:

e check the symmetry of the Bootstrap distribution,
that assures the bootstrap property. Find if neces-
sary a transformation h such as

-~ -~

h(6) — k() and h(6*) — h(H)

are pivotal, that is follow the same distribution.
Then make the estimate of the h intervals before
anti-transforming with A~!

e make different estimates with different bootstrap
samples (with replacement) Ny < N and verify that
the variances scales as 1/Np. This verify the condi-

tion
V1—=py/p1 =1

There exists a wide statistical literature on the sub-
ject....
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PHYSICAL REVIEW D VOLUME 39, NUMBER 1 I JANUARY 1989

Application of the bootstrap statistical method to the tau-decay-mode problem

Kenneth G. Hayes and Martin L. Perl
Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309

Bradley Efron
Department of Statistics, Stanford University, Stanford, California 94309
(Received 18 July 1988)

‘T'he bootstrap statistical method is applied to the discrepancy in the one-charged-particle decay
modes of the tau lepton. This eliminates questions about the correctness of the errors ascribed to
the branching-fraction measurements and the use of Gaussian error distributions for systematic er-
rors. The discrepancy is still seen when the results of the bootstrap analysis are combined with oth-
er measurements and with deductions from theory. But the bootstrap method assigns less statistical
significance to the discrepancy compared to a method using Gaussian error distributions.

At present there is a problem"? in fully understanding
the decay modes of the tau lepton to one-charged parti-
cle. The average directly measured value' of the in-
clusive, one-charged-particle, branching fraction B, is
(86.64+0.3)%. The same number should be obtained by
adding up the branching fractions of the individual one-
charged-particle modes. Examples of these individual
branching fractions are

B,, 1 —v.te +¥,,

B T v, tp Y,

wt

B, v —v +m ,

Hp, T =V, t+p v W -F-frﬂ,

Hﬂw-""" T v T +27°
B_, o T —v. o +370.
As shown in Table I from Ref. 2, this sum is less than 141

(B0.64+1.5)%, 6% less than the directly measured value of
B . This is the r-decay-mode problem.




Bootstrap of B, and B, data

B,

Combined Energy
Measurement error iGeV)
84.0 +2.0 32.0-36.8
85.2+2.61+1.3 +2.9 14.0
B5.1=2.8+1.3 +3.1 22,0
B7.8£1.343.9 +4.1 34.6 average
B4.7+1.1°15 H 13.9-43.1
86.7+0.34+0.6 +0.7 29.0
86.9+0.2+0.3 +0.4 29.0
86.1+0.5+0.9 +1.0 30.0-46.8
87.9+0.5+1.2 +1.3 29.0
87.2+0.5+0.8 +0.9 29.0

+1.0

84.7+0.8+0.6

29.0

Experimental

group

Reference

CELLO
CELLOD
CELLO
PLUTO
TASS0
MAC
HRS
JADE
DELCO
Mark 11
TPC

H. J. Behrend er al., Phys. Lett. 1148, 282 (19382)

H. J. Behrend er al., Z. Phys. C 23, 103 (1984)

H. 1. Behrend er al., Z. Phys. C 23, 103 (1984)

Ch. Berger et al., Z. Phys. C 28, 1 (19835)

M. Althoff er al., Z. Phys, T 26, 521 (1985)

E. Fernandez ef al., Phys. Rev. Leit, 54, 1624 (1985)
C. Akerlof e al., Phys. Rev. Lett. 55, 570 (1985)

W. Bartel er al., Phys. Lett. 161B, 188 (1985)

W, Ruckstuhl ef af., Phys. Rev. Lett. 56, 2132 (1986)
W. B. Schmidke er al., Phys. Rev. Lett. 57, 527 (1986)
H. Aihara er al., Phys. Rev. D 35, 1553 (1987)

Trimmed mean 50%

Correlation between measurements
Weighted resampling Int(1/c2) times
The error on measurements is not considered

Scope of the analysis: to test wether errors only or the

data itself are unreliable

142



TABLE V. (a) Independent measurement of the +~ —e " ¥,v; and v~ —u~ ¥,v, branching fractions B, and B, in perceht, The sta-
tistical error is given first, the systematic error second. (b) Constrained or correlated measurements of the v~ —e " ¥,v, and
T~ —»p” ¥ v, branching fractions B, and B, in percent. The statistical error is given first, the systematic error second.

Reference

M. L. Perl er al., Phys. Lett. T0B, 487 (977)
M. Cavalli-Storza ef af., Lett. Nuove Cimento 20,

Y. Burmester et al., Phys., Lett. 688, 297 (1977)
W. Bacino et al., Phys. Rev. Lett. 41, 13 (1978)
J. G. Smith er al., Phys. Rev. D 18, 1 {1978)

W. Bacino et al., Phys. Rev. Leti. 42, 6 (1979)
R. Brandelik et al., Phys. Lett. 92B, 199 (1980)
Ch. Berger er al., Phys. Lett. 99B, 489 (1981)

H. J. Behrend et al., Phys. Lett. 1278, 270 (1983)
M. Althofl er al., Z. Phys. C 26, 521 (1985)

Ch. Berger ef al.,, Z. Phys. C 28, 1 (1985)

B. Adeva et al., Phys, Lett. B 179, 177 (1986)
W. Bartel ef al., Phys. Lett. B 182, 216 (1986)

P. R. Burchat er al., Phys. Rev. D 35, 27 (1987)

M. L. Perl ef al., Phys. Lett. 0B, 487 {1977}

A Barbaro-Galtiero et al., Phys. Rev. Lett. 39, 1058
R. Brandelik er al., Phys. Lett. T3B, 109 (1978)

C. A. Blocker er al., Phys. Lett. 1098, 119 (1982)
E. M. Baltrusaitis et al., Phys. Rev. Lett. 55, 1842

W. W. Ash et al., Phys. Rev. Lett. 55, 2118 (1985)

"B‘# B i
Combined : Combined Energy Experimental
Measurement  error  Measurement  error (GeV) group
(a)
17.5£2.7+3.0 4.0 3.8-7.8 Mark 1
22 Ly 4.8
337 (1977)

15 30  36-5.0 PLUTO
16.0 +1.3 3.1-7.4 DELCO

22 b 6.4-7.4 Iron Ball

21543 +6 3.6-74 DELCO
19 +9.0 35 +14 12-31.6 TASSO

17.8£2.0=1.8 +2.7  9.4-31.6 PLUTO
18.3£2.4x1.9  +£3.1 17.6£2.6%2.1 +3.3 340 CELLOD
204+3.0%13 *4H 129417251 *1.8  13.9-43.1 TASSO
13.0£1.9£2.9 +35 194*F1L6x1.7 +2.3 4.6 PLUTO

average

17.4+£0.6+0.8 +1.0  14.0-46.8 Mark J

17.0+0.7=0.9 +1.1  1858+0.810.7 +1.1 3.6 JADE
average
19.1+0.8x1.1 =14 183+0.9x0.8 1.2 29.0  Mark II
(b)
18.9+1.0+£2.8 +£30 183+1.0x2.8 +3.0 J.B-7.8 Mark I
2.7 55 221 +55  4.1-7.4 Lead-Glass
Wall (1977)
18.5+2.8+1.4 £31 18.0+2.8+1.4 +3.1 3.9-5.2 DASP
17.6t0.61.0 =13 17.1£0.6%1.0 +1.3 3.5-6.7 Mark I1
18.2+£0.7+0.5 209 18.0£1.04£0.6 +1.2 38 Mark III
{1985)

17.44+0.8+0.5 £09 17.7£0.8+0.5 +0.9 29.0 MAC
18.41t1.2+1.0 =£16 17.7£1.240.7 1.4 290 TPC

B

e
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Results

TABLE ¥1. Means and standard deviations (SD) for B,, B, B_, B,, and B . Both quantities are in

percent.

Analysis method

Bootstrap with Normal-error
Bootstrap weighted measurements method from
{method A) imethod C) Ref. 1
Branching Mean, Mean, Mean, Formal
fraction 259 trimmed sD 25% trimmed 5D not trimmed error
B, 85.8 0.63 86.9 .36 86.6 0.28
B, 22.5 0.35 22.5 0.19 22.5 0.8B5
B. 10.2 0.55 10.8 0.45 10.8 0.60
B, 18.3 0.38 17.8 0.30 17.6 0.44
B, 18.2 056 178 0.21 17.7 0.41
85.8—-81.3
Bootstrap: =3.1
V1.32 +0.62 d
5" +0. Some data are

86.6-80.6 unreliable

Standard analysis: =3.9

J1.5% +0.32
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The non parametric

BOOTSTRAP

A possible use of the Bootstrap in Nuclear physics

W
dﬁ- b 1
4—momenta =, /L experimental
result
X
bootstrap A

4—momenta
__%_ X
error on W

—ea— X
r 145

4—momenta

4—momenta

4—momenta




BOOTSTRAP FOR COMPARING TWO POPULATIONS

Given independent SRSs of sizes rn and m from two populations:

1. Draw a resample of size n with replacement from the first sample
and a separate resample of size 7 from the second sample. Compute a
statistic that compares the two groups, such as the difference between
the two sample means.

2. Repeat this resampling process hundreds of times.

3. Construct the bootstrap distribution of the statistic. Inspect its
shape, bias, and bootstrap standard error in the usual way.

Useful when the two samples are
signal and background....
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The dual Bootstrap

Fix the background on one sample and
calculated the peak signal
with another sample to avoid biases !

Repeat on bootstrap samples (dual bootstrap) 147



Standard analysis in
nuclear physics experiments

e the 4-momenta are reconstructed and the
analysis is performed

e errors are calculated following the standard
(gaussian) theory

e a MC toy model is invented and the anal-
ysis procedure is checked on this model

e at this point the procedure could be further
checked on bootstrapped data!
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Conclusions

‘Poissonian Counting: most of the tests

do not consider the error on background and
overestimate the signal. Often true (mean) values
and measured values are improperly confused.

‘Binomial counting: a general theory there exists
and should be applied.

‘The errors should be calculated by MC methods
and the procedure checked with MC toy models

‘Nonparameftric Bootstrap methods should be used
also by physicists
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Some problems
with frequentism
and their cure

150



We restart from the
Neyman construction

IIIIIIIII%'III

7 LILIL LI

N
IIIIIIIIIIIIII

Observed value

True value

j

<
[a—
[ ]
g

4 5 6

~d

Neyman's prescription:

Before doing an experiment, for each possible
Value of theory parameters determine a region of data that occurs

C.L. of the time, say 90%.
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Some frequentist problems - 1

A Gaussian upper limit estimate with C'L =
90% when physics says that the true value is
p=U.

If a negative value © < —1.28 ¢ is obtained, we
find an unphysical upper limit p <0 !

A solution, the FLIP-FLOP technique:

when z < 0 one assumes the upper limit for
z =0, that is y = 1.28s

WRONG!: one finds an 85% upper limit
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0 MW
-2 -1

0

1

2

MMemsured kean %

When y=2 there is only 85% coverage!
Due to flip-flopping (deciding whether to use an upper limit
or a central confidence region based on the data)
these are not valid confidence intervals.
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Some frequentist problems - I

If 4 > 0 an interval with correct coverage
(i.e. CL =95%) is

(x—1.960,2 +1.960) z>19¢0
[ E (0,2 + 1.960) WHEN =190 <z <190
0 r<—190

Here the coverage is correct

The Neyman
curve

BUT, when r < —1.96 0 we have =10

Are we Happy? 1o



Not only the COVERAGE!!

pernmpitted values

Al |

A and B have the same coverage but

A minimizes the probability to contain
wrong LL values

The A interval is the result of a
more powerful estimator
New concepts are necessary
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Some frequentist problems - II

A counting experiment with background

P(Jnr; }'-4':5 b) — we—(ﬂ-l-b]
n!
The background b is known, the counts

n are measured.

Find the upper limit for the p param-
eter with a fixed C'L, for example 90%

b/n| 0 1 23] 4

0 | 2.30 |3.895.32|6.68|7.99
1 | 1.30 |2.89/4.32|5.58|6.99
2 | 0.30 |1.89 3.32|4.68|5.99
3 | —0.79]0.89]2.32|3.68 |4.99

When no events are counted,

an experiment with an expected background of

3 events measures

a negative m upper limit for the expected value

of the countsl! 156
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Signal Mean

b1 2 2 4 5 6 7 & 9 101112131415
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FIG. 5. Standard confidence belt for 90% C.L. upper limits, for
unknown Poisson signal mean u in the presence of a Poisson back-
ground with known mean & =3.0. The second line in the belt 15 at

=4,
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PHYSICAL REEVIEW D VOLUME 57, NUMBER. 7 1 APRIL 1998

Unified approach to the classical statistical analysis of small signals

Gary J. Feldman®

Deparment of Physics, Harvard University, Cambridge, Massachusens 02135 .
Bayesians recall

Robert D. Cousins’ The dGTZ

Department of Physics and Astrenomy, University of California, Los Angeles, California 90....
(Received 21 November 1997; published 6 March 1998)

We give a classical confidence belt construction which nmfies the treatment of upper confidence limuts for
null results and two-sided confidence intervals for non-null results. The wmfied treatment solves a problem
{apparently not previously recogmized) that the choice of upper lmut or two-sided mtervals leads to mtervals
which are not confidence mtervals if the choice 15 based on the data. We apply the constmction to two related
problems which have recently been a battlezround between classical and Bayesian statistics: Poisson processes
with backzround and Gaussian emrors with a bounded physical region. In contrast with the usual classical
construction for upper limuts, cur constuction avelds unphysical confidence mtervals. In contrast with some
popular Bayesian mtervals, our intervals elmnate conservatism (frequentist coverage greater than the stated
confidence) 1n the Gaussian case and reduce 1t to & level dictated by discretensss in the Powsson case. We
generalize the method m order to apply it to analysis of expenments searching for neutnno oscillations. We
show that this techmique both gives correct coverage and 15 powerful, wlile other classical techmigues that have
been used by neutrine oscillation search experiments fal one or both of these cnitena.

[S0556-2821(98)00109-X] . &z
PACS mumber(s): 06.20.Dk, 14.60 Pg QC\
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The FC unified approach

" p__ Pz _ plzip

max [p(z; p)]  plx; i)

CL =X p(a;u) = [yl p) dz

2 b

This frequentist approach is called unified:

e the technique for the one-sided and the
two-sided intervals is the same (by FC)

e the approach merges the parameter esti-
mate and the hypothesis testing techniques

For a given ('L and p, there are many (a,b)
choices. The FC ordering Principle (FCOP),
inspired to the NP theorem, is to choose the
extremes a and b that cover the points ordered
for decreasing values of 160



The FC Neyman curve

The idea is to use the likelihood ratio
p_ Pleip) L)
plz; i) L)
e R~1—pu=~pu

e [t ~0 — pu far from the ML estimate
e constraints on p are fully considered

e P{u € Ipc} minimum when g # fiirue

The method is officially recommanded from PDG 1998
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The FC idea

The ratio
_ L)

L(ji; x)
minimizes 7 and maximizes (1 — )
The R test tends to be Uniformly Most Powerful.
The probability that / contains false i values

R

is minimized

R

NONUMP —

1-p UMP —
BIASED —
|- <o
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Poisson with background
The FC method

f = max(0,n — b)

—{p+b)

P(n; u,b) = %e
O fsipen) -
e U n(p+ )" = (u+ )" =0
Hence
ﬂ_{n—b if n>b
h= 0 otherwise

The method when p = 0.5, b =3, CL = 90%

This is only ONE POINT on the Neyman curve _

n P(n;u,b) i P(n;pu,b) R  score 90%
0 0.030 0 0.050 0.607 6
1 0.106 0 0.149 0.708 3
2 0.185 0 0.224 0.826 3
3 0.216 0 0.224 0.963 2
4 0.189 1 0.195 0.966 1
5 0.132 2 0.175 0.753 4
6 0.077 3 0.161 0.480 7
7 0.039 4 0.149 0.259

8 0.017 5 0.140 0.121

9 0.007 6 0.125 0.018

10 0.002 7 0.125 0.006
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imbsewed value

central

likelihood

likelihood ratio ordering

8]

Fig. 4. Position measurement from drift time. The error 15 due to diffusion.
Classical confidence mmtervals are shown together with the hkelihood function
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(Gaussian with constraints
The FC method

o [exp {—1(”‘7 - “)2” — 0= fi = { rite20 x(0,2)

o 2 o2 0 if <0
’ v% x>0
_glzp) PSR
R = @0) where g(x; 1) = ¢ :
g\ pf Ex]:-{\;%f?] <0

{e(ﬂ:;;)“{m x>0 m >

| elen—r?/2) 4 < 0
Then, the Neyman construction:

One determines the order in which the
values of = are integrated.
That is, for any value of ;.
termines the interval [z, 35| such that

R(z1) = R(x2) and that ////////)
/[i g(x;p)de = CL




From Feldman notes:
Measured Mesn x

(1) This approaches the central limits for x >1.
(2) The upper limit for x = 0 is 1.64, the two-sided rather than the one-sided limit.
(3)From the defining 1937 paper of Neyman, this is
the only valid confidence belt, since there are 4 requirements for a valid belt:
(a) It must cover.
(b) For every x, there must be at least one .
(c) No holes (only valid for single p).

(d) Every limit must include its end points. 168



A famous Paradox

An experiment that measures less
events than the expected back-
ground, will report

a better (lower) upper limit

than an identical experiment which
measures a number of events equal
to the background

If no events are detected, the
experiment with expected back-
ground will find

a better upper limit

than the experiment with no back-
ground. 170



A famous Paradox

Standard frequentist result:
counts with background, C'L = 90%, the
upper limits improves when y;, increases

=1 1 2 3 4
b

0.012.30 3.89 5.32 6.68 7.99
0.5]1.80 3.39 4.82 6.18 7.49
1.0]1.30 2.89 4.32 5.58 6.99
2.010.30 1.89 3.32 4.58 5.99

A paradox?
YES from the Bayesian point of view
P(H |data)
NO from the frequentist point of view
P(data|H)

It implies simply that the upper limit
“improves”, but in a small number
of experiments, when n <
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A frequentist remedy: the
Sensitivity

e a /i, value is fixed

e some Poisson data are gener-
ated via MC

1y
. — 70 —Hp
p(x; 1p) e

e the FC average upper limit is
found for a given C'L
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The sensitivity

Our suggestion for doing this 1s that in cases in which the
measurement 1s less than the estimated background, the ex-
periment reports both the upper limit and the *‘sensitivity”™
of the experiment, where the **sensitivity’’ 1s defined as the
upper limit that would be obtained by an ensemble
of experiments with the expected background and no true
signal. Table XII gives these values. for the case of a mea-
surement of a Poisson variable.
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TABLE XII. Experimental sensitivity (defined as the average
upper limit that would be obtained by an ensemble of experiments
with the expected background and no true signal), as a function of
the expected background. for the case of a measurement of a Pois-
son variable.

b 68.27% C.L. 00% C.L. 05% C.L. 90% C.L.
0.0 1.29 2.44 3.09 4.74
0.5 1.52 2.86 3.59 5.28
1.0 1.82 3.28 4.05 5.79
1.5 2.07 3.62 4.43 6.27
2.0 2.29 3.94 4.76 6.69
2.5 2.45 4.20 5.08 7.11
3.0 2.62 442 5.36 7.49
3.5 2.78 4.63 5.62 7.87
4.0 2.91 4.83 5.86 8.18
5.0 3.18 5.18 6.32 8.76
6.0 3.43 5.53 6.75 9.35
7.0 3.63 5.90 7.14 0.82
8.0 3.86 6.18 7.40 10.27
0.0 4.03 6.49 7.81 10.69

10.0 4.20 6.76 8.13 11.09
11.0 4.42 7.02 8.45 11.46
12.0 4.56 7.28 8.72 11.83
13.0 4.71 7.51 9.01 12.22
14.0 4.87 7.75 9.27 12.56
15.0 5.03 7.99 9.54 12.90
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The Unified Approach in two
(or more) dimensions

One has to estimate the (z,y) CL regions and
sometimes the 2z confidence region

= f(-ﬂ:-,.y)

having measured z,, and y,,.

e the Likelihood Ratio is chosen as:
p tayw
L(z,y; 1)
—2In R = —2[In L(z, y; ) — In Lz, y; fo)] = x°(f2)
e for a given CL a p, and p, map is made,
calculating at each point the quantile

R<Ri_cp
where
[t g(R) dR=1—-CL

When the [-space is constrained or com-
plicated MC integration must be used.

e when we have to find » — f(r,y) a second
map must be generated (usually via MC)
for each (p,,u,) with the values

21-CL/2 Z1-(1—CL)/2
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The Unified Approach in two
(or more) dimensions

e Now the
[:,LEJ ) :U’I.f)
plane is mapped with three numbers:

Ri_cL , zi—crpz , Z1-(1-CL)/2

e the acceptance region (i, p,)c; is defined
by
R(xpm, ym) < Ri_c1

21-CLJ2 < 2y = f{mmz ym) < 21-(1-CL)/2
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The Unified Approach in two
(or more) dimensions

When we have z; gaussian variables ~ N(u;, o?)
(r; — 13)* (x5 — 1)°

of of

—2InR=Ax*"=Y

i

When there are no cuts or constraints
i = T;

and we reobtain the usual Y.

In the case of Poisson variables we have

[l pu; e

L1; p,ng"ri e Hi

—21In {

When there are no cuts or constraints:

—2In R =23 [p; — zilnp; — x; + x; In x4
i 177



Example

Ratio of two gaussians z = r/y, comparison of
three methods

e standard

e bootstrap:
sample from two gaussian of average r and
y (measured value), take the ratio, make
the histogram and find the two quantiles

Z1-CL/2 and Z1-(1-CL)/2-

e unified method: find
R(I’mvym} < Ri_¢1

Zi—or2 S 2y = flxm, Ym) < Z1-(1-CL)/2
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Example
Measured
x = 20 y=13 o,=0,=3

z = z/y interval with C'L = 0.683;
coverage calculated with MC:

e standard: z = 0.730 + 0.002;
e bootstrap z = 0.700 + 0.002;

e unified: z = 0.696 &+ 0.002;

il

Entries 410000
200 Mean 1.606

EMS 0.467
180

160
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120
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Example
Measured
r =11 y=6 o,=0,=.

z = z/y interval with C'L = 0.683
with the cut y > 0:

e standard: z = (0.774 4+ 0.002;
e bootstrap z = (0.736 + 0.002;

e unified: z = 0.686 + 0.002;

_
Entries

h1

160

Mean
RMS

10000
2.243
1.551

140

120

100

a0

60

40

20

u 1
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Neutrino Oscillations
The QM probability is:

E

L is the distance (km), E is the energy
in GeV and Am? = |m? — m2| is (eV/c*)2.

The result is plotted in the
Am? vs. sin*(20) plane

1.27TAm2L
P(v, — v.) = sin*(26) sin ( - }

The goal is the search for an v, excess
(the signal) over the normal v, back-
ground.

The data are usually a bin content, the
signal n; a and the backg. b;.

The expected number of event is:

1.27TAm2L
M., = F ( sin?(26) sin’ _ )

The frequentist test is

s o (i — b — )’

X =X 181
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Frequentist neutrino
Monte Carlo

The starting point is the key formula:
2A[In L] = 2 (In L(0) — In L(0)) = xA(1)

Recall that from probability calculus

L X-:' — Htrue 2

< ( ! .ru’l i ) ~ Xz(ﬂ)

21" o2
and asymptotically, in statistics
o (X*.E - :u(p)t,rucjg (X*.E - ﬁ(p))z

L 2
> > > 5 ~ X"(p)
N 7 . g - pdof
n dodf. (n—p) d.of. prao-h

For CL = 90% and two parameters
x2(sin?(26), Am?*) — x*(best) < 4.6

The region is given by the points with
x? within 4.6 of the minimum
(acceptances neglected)
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The acceptance zone for no oscillations (Hypothesis)

10°g if the experiment
- falls here, we
i can reject the
i hypothesis with
ol | 90%cL
: §
s - -
OO -
Nﬂ p— =
T 10 3 E
J. IIIII L1 IIIIIII L1 Illllll 1 Ll
107 0 . 10" 1
sin~(20)

FIG. 11. Calculation of the confidence region for an example of
the toy model in which sin’(26)=0. The 90% confidence region is 183
the area to the left of the curve.



Frequentist neutrino
Monte Carlo

Another method is the Raster Scan
A grid is made for each Am? value:

E: (ﬂl‘ — b; — p; t.rue(smg(zg))g

y? is calculated as a function of sin®(26)

Raster Scan gives an exact coverage

but does not give the optimum cover-

age.

The point is that /i is found on one pa-

rameter only, without taking into ac-

count the compound probability of both

(sin®(28), Am?), as required by the R test
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here the
cuts are

Taken into

account

Unified Approach (FC)
Monte Carlo

The correct method
applies the FC ordering principle

n (g — by — i ) (i — b — f1;)°

2InR = Ax* =Y 5 ) 5

i ; i a;
e V[sin?(20), Am?] a set of n;,b; values is simu-
lated;

e for each point, the true value

S, , (1.2TAm’L
p; = sin’(26) sin? (%}

is calculated with the model,

— Hhest = Iﬁl

gives the highest probability for the physically allowed values

e V[sin?(26), Am?| the quantile yZ, is calculated
P{AX* < Axg1} =CL

e when one experiment gives {n;, b;}, the ac-
ceptance region is

Ax?(ni, bi; sin®(260), Am?) < x2
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:IIIII L LI ] lIIlIIlI I IIIIll:
E This technigue _;::’;,E
: Raster scan [ :
~ 107k mepoine | This is a really
< F 1 a good result!
> 199 '
N= — -—
10 3 =
1 IIIII I IIIIIIII I [ IIIIIII LS
10~ 0> . 10 1
sin~(29)

FIG. 12. Calculation of the confidence regions for an example of
the toy model in which Am~=40 (eV/e?)? and sin’(26)=0.006, as
evaluated by the proposed technique and the raster scan.
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FIG. 14. Regions of significant under- and overcoverage for the

global scan. 187



TABLE XI. Properties of the proposed technique for setting
confidence regions in neutrino oscillation search experiments and
three alternative classical techniques defined 1n the text.

Always Gives
gives useful proper
Technique results coverage  Is powerful
Raster scan \_
Flip-flop raster scan
Global scan ‘x
Proposed technique
P 1 \ N N
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Some frequentist problems IIT

A lifetime measurement gives
t=1s

Evaluate the lifetime A with o = C'L = 0.683.
We use the method of the pivot quantity
(which is in this case ¢ = At):

p(t: ) dt = Xe M dt = e ?dg
Hence we use the pivotal equality
P{g1 < q(t;A) < g2} = P{Ai(q1) <A < Malge)} =a =CL
Then, the interval is

gy _ _ e
e ldg=e M —e®=aq=CL

g = —1In(e™ —a)

qi G2 In(fe™™ — )
— < A< —=—

i i i

d/0q; = 0 gives the minimum interval as

1
0<A< —In(1-0L)

| 0<A<1.15 ! | 189




A Paradox: the lifetime
measurement 11

1
0< A< —In(1~CL)

0<A<1.15 st

If one works in terms of 7 = 1/)\ and repeat-
sthe same procedure, finds:
f

t <7< —
—Infem —a) = T @

d/0¢q, =0 gives the minimum interval as
0.156 < A <265 s

corresponding to

0.377 < A < 5.88 g!

Note that both the A\ intervals give the right
C LI
[ 11567115 d¢ — 0.683

[ 5.88e755 dt = 0.0027 , [ 0.377e 37" dt = 0.3140

1 —0.3140 — 0.0027 = 0.683 190



A Paradox: the lifetime
measurement 111

The likelihood ratio is invariant w.r.t. any

changement of variable (fundamental theorem).

In this case, for a 1¢ interval
InL—InL=0.5

we have to find the )\ value
v A 2 Y
e N = 1 — A\ = —+ A=1
5 }.}ue 0 — A 0 A
The confidence interval is the solution of the
equation

Ine! —Inde™* =05 - A—InA=15

The solution is

0.301 < A <2358 g
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A Paradox: the lifetime
measurement IV

0.301 <A <2358 s
[ 2.358e 235 d¢ — 0.0046 , [ 0.301e ¥ dt = 0.2599

| —0.2599 — 0.0946 @

The coverage is wrong
Some physicists use the LR technique instead

of the frequentist or Bayesian approaches
(see G. Zech, EPJ direct C12, 1-81 (2002))

24

P O S S ) SO
I 1 1 I
R S S SRR 0 SO S N
. I
1
1
——————— b S e R ittt ettt
1
:
I 1 1 I
1.0 f i i f
5030 - : 236 4 3

Figure I: A —InA =15
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Frequentism, Bayes or likelihood ratio??

1.0

0.8 |

o
o)

©
o

probability density

O
ho

O
o

f(x|6,)

observation

Fig. 1. The likelihood is larger for parameter #,, but the observation is less then
1 st. dev. off #5. Classical approaches include #; and exclude #; within a 68.3%

confidence interval
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Draw the conclusions by yourself .....

Table 4. Comparison of different approaches to define error intervals, see text

method: classical unified likelihood Bayvesian Bavesian
1] a.p.
CONSIstency - - -- ++ n n
precision - - - + + n
universality -- -- _ + ++
simplicity - - - ++ + +
variable transform. - +4 ++ - .
nuisance parameter - - _ n +
erTor propagation - - + + n
combining data - - ++ + B
coverage + ++ - - - - - -
objectivity - - ++ + -
discrete hypothesis - - + + T
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EP Jdirect C12, 1-81 {2002) Springer-Verlag 31

likelihood

1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

FC unified

LL

Fig. 16. Likelihood function for zero observed events and 90% confidence upper
limits with and without background expectation. The labels refer to [9] (f),
Bayesian (b), [41] (g) and [42] (r)  classical (c)
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FIG. 15. Comparison of the confidence region for an example of
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STATISTICA PER FISICI

1. Calcolo delle probabilita
2a. Statistica frequentista
2b. Statistica bayesiana

3. Likelihood

4a. Fondo e segnale

4b. Metodi Bootstrap

5. Approccio Unificato

6. Unfolding

Alberto Rotondi 197
Universita di Pavia



Z = f(X1,X5) .

FOIdmg Zn = Z e Zy = Xy auxiliary variable
theorem 7= f(X0, Xa) ,  Zo=X.
The jacobian is

afrt af!
g =| o 0| O
- B | 621 j

0 1
From the general theorem one obtains

(9 —1
Pz(zhzz) px(ﬁhiz) 5»21‘1

by integrating on the auxiliary variable
p_z] El) [}DZ ,31:.,2:’2) d,zg .

hence
a —1
pz(z) = [P_X T1, T2) g; | dxo
5 —1
— fp_)((fl (2, @2), T2) glz dazg ,

which is the probability density

198



For independent variables: .
5f-1 Convolution
pz(z) = }P}{l (fl_l(za 332)) ng(:EQ) 5&2 dazg . fheor\em
when Z is given by the sum
/= X1+ Xy,
we have
~1 ofr
Xi=f1(4,Xs)=72—-Xs, 9 =1,

and we obtain

pz(z) = fj;px(z — 9, o) dxy .

When X; and X, are independent, we obtain
the convolution integral

— [ pl{] Z = L?)I}Y)(LQ) dLLZ 3

In physucs
( 6 instrument funcfion f signal)

9(y) —/ fly—z)do(x)dx , 199



Uniform*Gaussian

When Z =X +Y where
X ~ N(u,0?) eY ~ Ula,b).
one has immediately

1 5 1  (z—y—p)?
g e e I =
[y (2= )P
_b—a,f“{r Qﬂexp_ 207 dy -
1

N )

200
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The 1D problem

In the reconstruction of an histogram,

® the true histogram (imacge) where the bin contents
are the expected values

H = '[#—1,#2, S :Ju'z"'«'r) 7 .Iu'j = P;mtpj = Htot jl;inift(y} dy
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The problem in 2-D

A picture in a z — y plane is the result of a double
dimensional folding, where the true points are smeared
out by detector effects.

N=3 Nijexp) (93)
Lj=
N is the total number of events and Njj(exp) is the
recorded number of event in the pixel placed at the
ith-row and jth-column.
The observed Njj(exp) events have to be compared
with the expected values Nj;(th) predicted by a model.

i'\'rij{t.h) = i'\'r.ﬂj{ObS) = ﬂ'?z Hfjr(tI'LlE‘:) Pt.(obsiﬂtrueiejr) , (94)
.El'jf
that is, the number of events observed in the ijth-cell is
due to the presence into the i'j'th-cell, times the prob-
ability P, that the PSF shifts the point from the ¢'j’ to
the ij-cell. One has to sum on all the cells near the
ij—one.

In the case of a two dimensional Gaussian point spread
function PSF:

L e (i — @) (i — yeg)’
21 0,0, 202 20
(96)

P, (obs;j|truey ;) =
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Fourier techniques
f(z) = [ F(t) e dt

Convolution:
f(@) = [ 9(y)i(z - y)dy
JE@)yemiet dt = [ G(t) vt Ar) e 0t g
[ F(t)e* ™ dt = [ G(t) A(t)e*™ ™ dt — F(t) = G(t) A(t)

Correlation

Corr(g,8) = [ g(z +1y) 6(y) dy — G(H)A™(t)
if the functions are real

G(t) = G(-t)*, Corr(g,d) — G(t)A(—t)
Autocorrelation (Wiener theorem)

Corr(g, g) = |G(#)[?
Total Power:
P(f) = [|f(@@)Pda = [|F(t)Pdt

Power Spectral Density (in the Fourier space):

PSD(f) = |F()2 + |F(-t)> L™ Fr@)P 0<t<
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Image Deconvolution

D(x) = [ dyl(y) é(|x — y])
In the absence of noise
F(D)
F(6)

where F' is the Fourier transform.

I=F_l[

For a real image I(n,,ns) the Fourier trans-

form is:
Jn'lrz b ]. J-‘I,.:'l i 1

F(kl-, .Ii’g) _ Z Z E'.Zm'.‘.:;ng,f'_ﬁ-"z Eﬁﬂiklnlfﬁl I(ﬁ’lj ﬂg)

no=M0 ny=0
F(ky, ko) = FFT[FFTy[I(ny,ns)]]

For the routines see for example Numerical
Recipes
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The problem with fluctuations

.. : ‘al
original ol A o
RERTR
L
: £ . &
0 02 04 068 OB 1
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Inverting the response matrix 161
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wersion of the responce matry.



original Poisson
statistics
. Fourier
Gaussian restored
smearing

o i) 49 = 0 10 120

Figure 11: Lena restored by FFT: The original image (top

left) is sampled with Poisson statistics (top right) and

smeared with a 2D 10-bins Gaussian PSF (bottom left):

the Fourier restored image (bottom right) is similar to

the Poisson sampled image. In this case the noise term 207
N is neglected.



original

Poisson
statistics

0 2 49 =0 20 o 120 2 =i 49 0 20 o 120

Figure 12: Lena not restored by FFT: In this case the noise
term N is not ignored: the original image (top left) is
smeared with a 2D 10-bins Gaussian PSF (top right)
and the result is sampled with Poisson statistics (bot-
tom left): the Fourier restored image (bottom right)
cannot recover the information lost in the noise. An-
other approach, statistical in nature, is required.

Gaussian
smearing

Fourier
(un)restored
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original

Gaussian
smearing

einstein

150

einstein

Poisson
statistics

Fourier
restored

Figure 13: Einstein restored by FFT: explanation as in

Figure 1.
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original

Poisson
statistics

Figure 14: Einstein not restored by FFT: explanation as in

einstein

£ ¢ 100 150 &

Figure 2.

150 2 <50

Gaussian
smearing

Fourier
(un)restored
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When true — obs = p —  deterministic methods (FFT)

can be used
v = Rep (19 Image

When true — smeared — obs = u — v — n statistical

methods must be used r'eS'fOr'G'ﬁOn

n=v+p=R*xp+p

In the poissonian or binomial case we have to minimize:
—InL(p) = =3 In P(n;, 1)
i

In the gaussian case we must minimize

X’ (1) = X (vi — ) (V7)ij(y; — ny)

In 2-D, when Nj;(exp) contains fluctuations, we have to

minimize:

[N;j(exp) — N P;j(obs)]?
N P;;(obs)

(20)

—2InLnjv,p) =~ x* =%
]

where
P(obs) = P(v|u) P(n)

If all the pixel contents p are the free parameters/
to be determined the problem has zero DoF

This is a ILL-POSED problem with many (and more
probable) unrealistic solution!!




Explanation:

The smeared
distributions of two input
— distributions cannot be
distinguished if they
agree on a large scale of

x but differ by
spike solution smooth solution oscillations on a

HIGLY PROBABLE UNLIKE “micr'oscopiC" scale much

smaller than the
many solutions give a good y? exper‘imen'l'al resolution

the spike ones are more probable!

Cure: to add to x* an empirical regularization term C|p|.

2 2 : or
Xo 7 ax C[P(tme)] to increase the DoF by using
or a parametric model
2 2 \
X" = x” + aC[P(true) Pv|)P(1)—>P(v|u')
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PET: positron emission thomography




Positron Emission Tomography

1/4'/ \
Positron Emission Tomography

e

7\

Positron Emission Tomography

detector
Ting

detector £1 s

Positron Emission Tomography

detector #2

detector #1 T4




Remember
p; By, random
and consider (95) as a form of the Bayes theorem

P(true;jlobs) o 3 Pyj(true) P,(obs;j|truey ;) = L(n|w)P(w)
it '
Bayesians say: posterior = likelihood x prior One max-
imizes P(true;;|obs) = F(u) (or minimize —F(pu)):

F(p) = In L(n|p) + In P(p) (99)

following the Maximum Likelihood (ML) principle.
The practical (no Bayesian) experimentalist introduces
an empirical regularization parameter o« and considers
the prior P(ju) as a regularization function C(p):

F() = o In L(n|p) + C(p) (100)
By keeping fixed the normalization:
vr = 32 fjfi; + pi = nr
i
the objective function is

The frequentist

assumes

P(u) =1

F(p)=alnLn|p) +C(p) + AMnr — X ) (101)

where )\ is a Lagrange multiplier

z—i':ﬂ—}.ltz?h;:ﬂ-r
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The objective function to be minimized is
—F(p) = -2InL(n|p)—aC(p)+Anr—Xv;) (23)
i
i = Py = o [, fily) dy . .
where a > (. Some regularization terms: ReQUIar|za1.|on
e minimum second derivative (Tichonov) 'l'er'ms

Cln) = — [ ()] dy =~ — MZE[ i+ 2ptie1 — pive]”

e minimum variance:

C(p) = —Varlu] =

= - i
e maximum entropy (MaxEnt)

fi |
Clp)=—->pilnpi=—-3 —In—
i P MT pT

® cross-entropy

Ju'i 125
(.“' - — Pi ln — =
) E (i g P[T #T qi

where ¢ = (q1,q2,...,¢,) is the most likely a priori 216
shape for the true distribution ;.



The objective function to be minimized is
—F(p) = ~2In L(n|p) — o C(p) + Anz — S v;) (24)
i

Some choices of o« > 0 are:

e Bayesian X Regular'iza'l'ion

&.—

L parameter

usually too much smoothing

e A= +allCull? >0
we can regularize the solution by choosing y* ~
DoF = number of pixel N, with the condition:

A-N
= ——
1Cwl[?
o 2 2
4 E ly=R*WL [ + ofC ul
£E
[ a4
~ |25
=
T 2N
2
£
best <—;:t'agreemenl 217
solution independent of smoothing
gIC ul 2



Regularization parameter

Two-peak deconvolution with the regularized ML meth-
ods (Glen Cowan, Statistical Data Analysis, Oxford (2000))

Examples of unfdling 181
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We have M boxes and a monkey that throws N ball

randomly into them.

What is the box-balls configuration of highest probabil

ity? Probability of a configuration:

1 N!
MN nllng! . TEN!

p:

M boxes and N balls

equal to

N balls labelled randomly from | to M

Inp=—NInM + InN!—>"In(n;!)

Stirling formula: n! = v2mnn"e™ — Inn! ¥ nlnn —n

Inp=—-NInM+NInN—-N+>n;—> n;lnn;

> pi=1, p,;:%, Inp=—NInM — N> p;lnp;

The most probable configuration means to maximize

Inp(p) =5 = —Zp.,; In p;

What is
M M EJ M LMJ MaxEnt ???
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N;j(th) = NP;j(obs) = N Y Pyj(true) P,(obs;j|truey;) (25)

.I'J'jf

We write this equation considering the operator R:

The iterative
é;_@%ﬁ (27) pr'inciple

for £k — oo the series converees if g < 1|.
By applying iteratively (26)

pev1 = Bn+ (1 —BR)ur = Bn+ (1— BR)(Bn+ (1 — BR)pk—1)
Bn+ (1 — BR)n+ (1 — BR)*pr_1
= fn+B(1—BR)n+B(1—BR)*n+ (1 —BR)up—s...

k
= Y 8(1-pR)n.

From (27):

I—(I—,BR)k—I_I 3
= n—+R n=p, for k—o00.
Hhst BR P g 220
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In summary, we use

M1 = pi + Bln — R * ] (28)

with the initial condition The i ‘l'e r‘Q‘l’i ve

Ho =T . o o I
The convergence is assured if pr‘|nC|p e

II—BR| <1

Since |1 — Bz| < 1 implies 0 < 8 < 2/z, in the case of
the operator R, which can be transformed in a square
matrix
R =(Rxp)p
we obtain the condition:
2

0<fB< -
g max eigenvalue of R/

Note that we works always with square matrices R * p,

p, p~t and R

However, this step must be repeated at each iteration

This method sometimes gives

spectacular result!

However, often it gives irregular solu-

tions. 221



Without 3 Wi+t = i+ [n— R *

Ghseres

60

. The iterative
Principle
without
best fit

50

40

10

60
50

40
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hobbs

Entries 4093
cecocd Meanx 3234

Meany 326
RMSX 1208

RMSY 1807

The
iterative
Principle
without
best fit +
smoothing
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6O
50

40

The
iterative
Principle
without
best fit
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Consider the case with statistical fluctuations

; P—FF Tt
n=R*+u+r
To have regular solutions and to make the method ro-
bust, we must search for an iterative solution which -

minimize the y*:

2 The iterative
X =||H*#—n||2——Z(ZR, m.k— nﬁ*mn_nika- o
o algorithm +

Note that is the case in which .
the PSF depends on the pixel difference only beS"' fl1'
(translational invariance) y
In this case we consider R as an operator and we can
work with symmetric M x N matrices.

Minimum y? w.r.t u;; gives the equations:

9 2
X = Z(Z R‘i—-r._k—.ﬂ Hys — nﬂr) Ri—m,ﬁ:—ﬂ, =0

Otbrnn ik T8

D<m<M, 0<n<N.

Hence :

The itemd

: 225
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It belongs to the family of the Newton-Raphson meth-
ods From (29):

2
L) ax

minimum
of ¥ 2

/

u
2
Mg =Wk - k—dx
d u

fie1 = pi + BeR * [n — R = p (30)

This formula minimizes y°. For example when (3, = j3:
pi+1 = i+ BR*[n — R* pul

= BRxn+(I— AR *

= BRxn+pB(I - BR) * Rxn+ (I — BR*)? * pp_1

k _ _ _ k41
= Z,BU—,BRE)I*R**H,:I Uﬁ}iR) BR*n — R n
i=0

The iterative
algorithm +
Best fit

226



Mice1 = pi + B R * [n — R * ] (31)

Previous method converges if
|\ —BR*R|| <1

when [ is independent of k. In this case

2
max eigenvalue of (R* R u)* p-!

0< 8 <

When ;. depends on k convergence is assured if (Rob-
bins and Munro 1951)

o0 20
lim gy =0, > Bv=o00, Eﬁi“‘imﬂ
N—=oo A =1 N=1

Next, the metha goged by adding a term

(32)

ik

||C*H||2=|Zﬂfk In ik / ot | a < 0
ik

The iterative solution becomes

pis1 = pg+ Ge[R*n— (R* R+ aC * C)uy) (33)

The iterative
algorithm +
best fit +
regularization

227



pie1 = i+ B[R *n — [R* R* py + o(In e/ pp + I

About 40 iterations, regularized with Maximum entropy

The iterative
algorithm +
best fit +
MaxEnt
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e+l = pk + Br[R*n — (R* R+ al) *

About 100 iterations, regularized with the sum of squares

The iterative
algorithm +
best fit +
Tichonov

&0
50
40
a0
20

10

b
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pi+1 = pie + B[R xn — (R* R+ al) * ]

The iterative
algorithm +

best fit +
Tichonov
regularization

&0 &0

a0 a0

40 40

30 a0

20 20

10 10
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The iterative
algorithm +
best fit +
Tichonov
regularization
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fre1 = pik + Be[R*n — (R* R+ al) = )
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Stopping Rules

e ? variation

_-‘lrfxz‘-."{ _ER; _ )2
2 2 Yi ij fVijljik)
X;;=||y—R*#-k|| = Z

i Sij Rijio

2 _ .2
X EX.E'.—I < 1{]—!3
Xk-1

If the regularization is good, one has y} ~ DoF.

e Signal to noise ratio (usually measured in decibel)

Silui — yi)? ]
SNR=10lo
S10 [Er(ﬂi — HMirue i)g

where iy, is the true image. This quantity is used
in the MC simulations during when the true image
is known.

e convergence of the solution

|k — pe—1||*

<1078
-1 |?
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ATHENA apparatus

Antiproton Accumulation +
Mixing with positrons

Na-22
Source
Positron Accumulator =
= et E
e 0 | 4 u.
= Ll
Antiproton Mixing 0 im
Capture Trap  Detector Trap L] I . ; ;
!
T 511 keV Y Mixing frap electrodes
Silicon micro 25 mm B I s i S —
strips — .
7T
| e
g & J5 ¢
cst A~ £
crystals *E -100 Y P S
— E_ 125 | antipretons
’)’[ E 1 1 1 1 1 1 1
511 keV Y 60 40 20 0D 20 40 60

axial position (mm)



From the ATHENA detector

Pbar-only
(with electrons)

|ﬁi|#|7..| ol
2151-05UU51152

Si sfrip detectors

DISTPIbUTIOH of anmhda’rlon vertices
when antiprotons are mixed with ...

cold positrons hot positrons

n

-h

o

b

ro




Vertical position (cm)

FIRST COLD ANTIHYDROGEN PRODUCTION & DETECTION (2002)

M. Amoretti et al.,
M. Amoretti et al.,

Nature 419 (2002) 456
Phys. Lett. B 578 (2004) 23

SIGNAL ANALYSIS:

opening angle
xy vertex distribution
radial vertex distribution

Number of events

65 % +/- 10% of

annihilations

Horizontal position (cm)

] © Cold positrons
& Hot positrons

T are due to antihydrogen
-1 0 1 2 3
Horizontal position (cm)

between 2002 & 2004

_ ol
[T

ZDW# m“‘w A *"Wﬁ”

more than 2 millions
antihydrogen atoms
have been produced

Pure antihydrogen (MC)

that's about 2 x 10-'* mg
or .. 1000 Giga years for a gram

'1 0.8 -06 -0.4 IJZ D 02 04 Dli DB

1 1

cos{ 0,)

80
V190 +110

=4.7;

80

+/190

IJB IJB IJ4 €02 0 02 04 06 DB 1

cos( f)
80
v/110

=06.5; =8 235




Annihilation vertex in the

Hbar (MC) BCKG
(HotMixData)

o

Pbar vertex XY projection (cm)
X Hbar + (1-x) BCKG

Hbar percentage

X =0.65+0.05 ‘

trap x-y plane

Cold Mix data

@ Celd

Nent= 144901

Mean ¥ = -0.0056
Meany = ({237
RMS & = 1,036
RMSY = 1,046

oy

ML Fit Result

Fit result|
backg % 43.7 +- 0.4 for -2.5<z<3

V)




Iteratve best fit method "

| Solution |

T Celd
Mert= 144301
umx 0005
o  eany s o2
| rMs 21084
: RMS Y. = 10«\

The vertex algorithm resolution
function is gaussian with

Cold Mix o =3 mm

The 2D deconvolution reveals 237
two different annihilation modes



The iterative algorithms +
best fit + reqularization

» iterative algorithms are used in
unfolding (ill posed) problems

* they need a Bayesian regularization term
* when there are degrees of freedom, one
can use a best fit of a signal+background

function to the data

» in this case there are no Bayesian terms
(pure frequentist approach)



Conclusions

e don’t be dogmatic

e use Bayes to parametrize the
a priori knowledge if any, not
the ignorance

e in the case of poor a priori
knowledge, use the
frequentist methods
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