0.1 Temi d'esame del 24 giugno 2003

- 1) $X \sim U(0,1)$ é una variabile casuale uniforme, calcolare media e varianza di X(1-X).
- 2) siano A,B e C tre eventi con probabilitá diversa da zero. Dire se sono vere o false le seguenti affermazioni:
 - 1)P[ABC] = P[A|BC]P[B|C]P[C];
 - 2)P[AB] = P[A]P[B],
 - 3) P[A] = P[AB] + P[AB];
 - 4) P[A|BC] = P[AB|C]P[B|C]
- 3) Vengono sommate 25 variabili gaussiane aventi tutte la stessa media μ ignota e $\sigma=1,$ ottenendo il valore di 245. Si trovi
 - a) l'intervallo standard di stima di μ (CL=68%)
 - b) il limite superiore di μ con CL=95%.
- 4) L'intensitá di una sorgente radioattiva viene determinata misurando per cinque volte (nelle stesse condizioni) i conteggi registrati da un contatore in presenza ed in assenza di sorgente. In assenza di sorgente, i conteggi sono dovuti al fondo radioattivo ambientale. I dati, in conteggi/s, sono i seguenti:

\overline{Misura}	sorgente	solo fondo
	$e\ fondo$	
1	171	19
2	189	12
3	180	15
4	202	18
5	168	14

Determinare l'intensità della sorgente (cioè col fondo sottratto) in conteggi/s, col relativo errore.

5) Nell'esperimento di misura della velocità della luce viene usata la formula

$$c = 2\nu L$$

dove $\nu = 11.5585 \pm 0.0030$ MHz (errore statistico, CL 68%) ed $L = 1296.5 \pm 0.2$ cm (errore sistematico, CL= 100%). Determinare la velocità c e la relativa incertezza totale.

0.2 Soluzioni

- 1) Utilizzando la proprietá $\langle X^n \rangle = 1/(n+1)$, si ottiene $\langle X(1-X) \rangle = 1/6$, $\sigma[X(1-X)] = 1/\sqrt{180}$;
- 2) 1) vera, 2) falsa, 3) vera, 4) falsa;
- 3) a) 9.8 ± 0.2 ; b) $(x-245)/5\simeq1.645$, da cui x=253.2, pari ad un limite superiore di 10.13 per la media. Si puoò anche fare $(\mu-9.8)/0.2\simeq1.645$ da cui $\mu=10.13$.
- 4) $166.4 \pm 6.2 \text{ conteggi/s};$
- 5) $c = 2.9971 \pm 0.0008 \ 10^{10} \ \mathrm{cm/s}$