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Abstract

We collect and explain here the basic formulae of the track follow-
ing and their implementation in GEANE. Some modifications for the
existing code are suggested and the results on PANDA apparatus are
shown.
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1 Introduction

With the words “track following”, one usually intends two main tasks:

a. to transport the track parameters (particle momentum, position and
direction) from one point to another in the apparatus, forward and
backward. The forward part can be obtained by simply using the MC
codes with the fluctuations switched off. For the backward tracking
(with increasing momentum) only minor modifications of the MC codes
are usually required;

b. to propagate the errors on the track parameters together with the mean
values. This is usually obtained by calculating, step by step, the 5 x 5
error or covariance matrix of the track (see below). This mathematical
part is analytically rather complicated: some general idea is given in the
current literature [1] but the detailed formulae are still confined in the
internal reports of the experiments, where many misprints and unclear
explanations are present. Some correct approaches can be found in
2, 3].

The Monte Carlo and track fitting tasks have been treated jointly by the
CERN community in the nineties. The famous GEANT3 program was used
for the point a., that is for the determination of the track mean values. For
the point b., the routines for the calculation and the transport of the error
matrix, written by the CERN EMC collaboration [2], were interfaced with
the structure, giving rise to a FORTRAN package called GEANE [4]:

GEANE = GEANTS tracking + EMC error propagation routines.

The great advantage of this structure is that the track following is automat-
ically obtained with the same geometry banks of the Monte Carlo, without
the necessity to write ad hoc codes.

After the transition to GEANT4, the GEANE structure has been lost.
Thank to the virtual Monte Carlo structure of the PANDARoot framework,
the old GEANT3-GEANE chain has been recovered. It is possible that in
the future a similar tool will be available also in the GEANT4 framework, as
the code GEANTA4E developed by the CMS Collaboration.

With this report we intend to make available, to the PANDA community,
all the physical and mathematical results on which the GEANE structure
is founded. Moreover, we describe in detail some important modifications



that we have made to GEANE for PANDA regarding multiple scattering
and energy loss. The use of the package is also explained in detail and many
examples are given.

We try to demonstrate and to justify all the statements and the formulae,
to create a tool for the future work. Indeed, the detailed ideas, techniques
and formulae of the track following collected here, that are the basis of any
track following code, are independent of any language or framework.

2 The track

The physical path of a particle of assigned mass m and momentum p is a
six-fold entity of parameters x, v, 2, Py, Dy, .-

The track is defined as a set of points in the detectors, corresponding to
the physical path of a particle.

The track points are obtained as the intersections of the particle path with
what we will call detector planes, that can be real detector planes or ideal
planes, in this case usually chosen perpendicularly to the particle direction.

If we translate the Master Reference System (MARS) and make the z —
y plane to coincide with the detector plane, the z-coordinate is blocked.
This demonstrates that the track is an entity defined by five parameters (see
Fig. 1). We denote with a,b = 1,2,...,5 the track parameters and with
t=1,2,..., N the detector plane index. Then, we write as f = f the true
mean values of the track parameters at the intercept of the N detector planes
and their measured values as = z}.

In this report we use the notation of standard statistical textbooks: a
random variable X (before the measurement) is indicated with capital letters;
after the measurement, the value x assumed by the variable is indicated with
lower cases (see also tab. 3). The random contents of X include measurement
errors (if any) and the fluctuations coming from physical processes as energy
loss and multiple scattering.

The 5 x 5 inverse of the covariance matrix C® of these measurements will
be indicated with V' = V% (weight matrix).

Usually there are different choices of the five track parameters. The most
common ones, that are also codified in the GEANE package, are the following
ones (see also Fig. 2) [4, 5]:



the five track coordinates: 1/p, v ,W’,v,w

master reference system

Figure 1: The five track parameters

e The transverse SC system:

1/pa)‘:¢:yJ_azJ_a (1)

where A and ¢ are the dip and azimuthal angle in MARS and y, and
z, are the coordinate of the trajectory in a frame with x, along the
particle direction and y, parallel to the zy plane. The momentum
components in MARS are given by:

Pr = P COSAcCOS @,

py = pcosAsin ¢, (2)
p, = psini;

The SC x unit vector is defined along the p direction:
x; = (cos Acos ¢, cos Asing , sin \) . (3)

Since y, lies in the MARS x — y plane and is perpendicular to p, the

usual choice is
Z XTI

Y= |z x x|
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which gives

y, = (—sin¢, cos ¢, 0) (4)
where y, and y are oriented in the same sense; with the cross product
T, Xy, =z, we easily obtain

z, = (—sinAcos¢, —sin A sin ¢, cos \) ; (5)

e the detector SD system:
1/p’vl7wl’v7w7 (6)

where (u,v,w) is an orthonormal reference system with the vw plane
coincident with the detector one. The derivatives indicate the momen-
tum direction variation in the new system. Taking into account that
the directions v and w are assigned in input when the SD plane is
defined, so that

uU=vXw

and recalling eq. (3), we can write:

T, v T, -w
o=t w' = == : (7)
£, -u £, -u
e the “spline” SP system:
Up, vy, 2y, 2. (8)

This representation is used when the detector arrays are placed along
the z-axis [4].

The SD representation permits to follow the trajectory on any detector
plane, real or ideal. The GEANE package allows to pass from one reference
to another one through the routines TRSCSP (i.e. from SC to SP), TRSCSD,
TRSDSP, TRSDSC, TRSPSC, TRSPSD [4]. These routines are in principle
not necessary for the normal user, but can be called for advanced applications
(see sect. 8).

In GEANE the basic transformation is from MARS to the SC system.
From egs. (3-5) the corresponding transformation matrix is

Ty cosAcos¢  cosAsing sin A x
Yy, | = —sin ¢ cos ¢ 0 Yy 9)
Zy —sinAcos¢p —sinAsing cosA z



Figure 2: Systems of reference for the track following

3 Track following

The track parameters can be considered as a function of the track length [,
so that we can write f*(l) or z%(l). The track follower (tracker) predicts the
trajectory of a charged particle in term of mean values and errors.

During tracking, three processes are taken into account:

e energy loss, which affects both averages (the Bethe Bloch formula) and
errors (called Landau fluctuations);

e Coulomb multiple scattering, that influences the error calculation only
(Moliere theory or gaussian approximation);

e the magnetic field, that influences the average trajectory only.

The check of the tracker should be done by simulating an ensemble of particles
and verifying that the mean values and the ¢’s of the histograms are correctly
predicted by the tracker (see Fig. 3). When one has determined the measured
track value x® or an estimate of the true track values f at a track length [,
the track following code determines the value at a new value [, in the forward
or backward direction. We will denote this extrapolation, which gives the



simulation
(many particles)

tracker
(one particle)

Figure 3: Comparison between the track follower and a MC simulation

parameter mean values, as an operator G(-) (remembering GEANE):
() =G(ly), (e=1,2,...,5), (10)

where the starting point at l, can be chosen as G(f(ly)) or G(z(l)) or in
other manners. Explicit formulae for the operator G can be found in [3].

The forward extrapolation (10) (deterministic propagation) can be ob-
tained in any MC code by launching one particle only and switching off the
multiple scattering and the random effects of discrete energy loss due to ion-
ization and delta ray production (“Landau” fluctuations, bremsstrahlung,
etc.). What is missing in this procedure is the backward mode and the 5 x 5
covariance matrix calculation containing the uncertainties of the extrapola-
tion. This is exactly what the track follower has to do.

The elements of the covariance matrix are given by (see tab. 3 for the
meaning of the symbols):

oy () = ((X'() = £1(1) (X7 () = F2(D)) (11)

where X (i = 1,2,...,5) indicates the random track parameters.
The main task of track following is to calculate the evolution of az?j, that
is the error propagation. If the particle is propagated from a track length [,
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to [ in a deterministic way, without any random process, then the propaga-
tion from a track length [y to [ can be considered as a function e[f(l)] and
described by the transport or Jacobian matrix [1, 5, 6]

oet (1)

Tl bo) = 55500y (12)

The name of T is due to the property to transport the errors from a track
point [y to a point [:
56(0 = T(la ZO) 5e(l0) ’ (13)

The error propagation is then obtained with the standard fundamental for-
mula:

a?(l) = T(1, 1) a®(l) TT (1,1) + W(1) , (14)

where the first term is the propagation to [ of the errors up to ly and the
second one contains the effects induced by the random processes between [
and [y (energy loss and multiple scattering) described by the weight matrix
W. In the covariance matrix o(ly) are included the multiple scattering and
energy loss effects before [, and also the measurement errors if the extrapo-
lation starts from the measured points x.
The geometrical properties of the transport matrix imply the following
equation:
T(l3,01) =T(ls,02) T(la, 1) (15)

If we track in the opposite direction (from [ to ly) along the same trajectory,
then
T(lo, 1) =T(l,1)™" . (16)

The most common applications of the track following codes are [1, 4]:

e trajectory calculation:
this is simply the track extrapolation in terms of mean values G(I) and
covariance matrix o;

e joining track elements:
to find the best estimate of the intersection & of a particle track in
a plane, starting from the measured points (see Fig. 4a)), one can
minimize w.r.t. & the 2

X(@) = (x = GL)Wi(z — G(1))" + (z = G(l2)) Wa(z — G(lg)();i



obtaining the x estimation as the weighted mean with error

W.G() +W,G(ly)
W, + W,

o) = (W, +Wy) /2, (19)

e track point (vertex) optimization:
in this case one starts from a track point &y and finds the best &y that
minimizes the x? up to a track length [, (see Fig. 4b)):

X (@) = Z (@i = G(l)) [oir] ™ (i = G(W))"],  (20)
or = o*+o?,,

where o and o, are the extrapolation and measurement covariance
matrices respectively, ; are the track measured points and /; the track
lengths up to x;. The minimization can be done also on a subset of the
5 track parameters [4];

e track fitting with recursive methods:
the application to Kalman filter will be discussed in detail in sect. 10.

4 The mathematics of track following

The main task here is to find the different contributions which lead to the
determination of the error in a point of track length /', starting from a point
with a track length [ # I'. The discussion is based mainly on the results
reported in [2, 3].

We consider the error propagation along a short length dl from [ to
(I + di). Let (6x); be the variation at [ along the track, then the variation
at (I + dl) will be the result of the following contributions:

- 7

(6)ira = [(02); + dl - Ay - (02))) + dl - By - (62); +(62™ )i (21)

Fiia

The error (6x);, 4 is composed by:

10



detector 1 detector 2

Figure 4: Joining track elements a) and track point optimization b) using a
track follower G(-).

o [(0x);+ dl-Ajpq- (d2)], which would be present even without magnetic
field and without multiple scattering. The matrix A propagates an error
in the direction of the track at [ to an error in the position of the track
at (I + dl) (see sect. 5).

e dl- B4 - (dx);, which is due to the deflection caused by the magnetic
field (see again section 5).

o (0xM),, 4, which is the error due to multiple scattering and energy loss
straggling in the interval (I,]+ dl).

By knowing the solution of the infinitesimal displacement given by eq. (21),
by dividing the total length of the track L into n small steps of size dl = L/n
and applying the above relation for each step one obtains [2]

(5:,,»)L=(H (5:1:0+Z HF M1+ (62, (22)

Detailed calculations can be found in Appendix A.
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The connection between F' and the Jacobian is

J=u2

The matrices F'; may be calculated step by step during the track following
and equation (23) thus gives the full error propagation from I; to Iy without
further approximations.

Since there is no correlation between the multiple scattering and energy
loss variations (6xM);,4 in two different points of the track, their contribu-
tion is usually calculated as a random component in the covariance (error)
matrix and included in the matrix W' in eq. (14) step by step (see sects. 6,
7). In a current step, the random error from the previous step is included in
o? of eq. (14) and propagated with the Jacobian. This is also the procedure
followed by GEANE [4].

Therefore, we can omit the (6z™),, 4 term in eq. (22) and write the
correspondence between the matrix F' and the transport matrix of eq. (13)
as:

T(l+ dl,l)=F =1+ (Aja+ Bra)- dl, (24)

which represents the error propgation in an elementary tracking step.

In the next sections we will give the explicit expressions for these matrices,
in the form used by GEANE. Their insertion in eq. (14) will give the Jacobian
for the covariance matrix transformation.

5 The basic Jacobian

In this section we collect the complicated formulae to solve eqs. (21, 24), that
can be used if one wants to write new codes in alternative or in addition to
the existing ones. The differential and the variation (uncertainty) on any
quantity x will be denoted as dz and dz, respectively. The uncertainties will
be considered as small variations of the quantity of interest.

We consider the SC system, where the infinitesimal spatial displacements
of the particle after a track length [ can be denoted as dy, and dz,, whereas
those on the track direction as d\ and d¢. dz, lies on the (z,,z,) plane
and corresponds to a rotation around the y, axis, dy, lies on the (z,,y,)
plane and refers to a rotation around the z, axis. From fig. 5 one sees that

12



dyf lgpsk do

§ X— yL/plane
dz = ld?x, X
- d
X| — Lplane

Figure 5: The connection between small deflections dA and d¢ and the
displacements dy,, dz, in the transverse SC system (1/p, A, @, z1,y1,21)-
Recall that =, is along the unscattered track and that y, lies on the x — y
plane.

these deviations are connected each other by the equations:
dz; =1d\, dy, =1lcosAd¢, (25)

One obtains, with the help of the equations above, the transformation be-
tween two transverse SC systems which are related to each other by an in-
finitesimal track rotation

dg=—-dz, /l=—-d)\, dy=dy,/l =cos A d¢

around the y, and z, axes, respectively (for the calculations see Appendix
A):

x| 1 dy —dp xy
v, | =1 —dy 1 tan A dvy i (26)
2\ ds —tanAdy 1 Z1

where the minus sign between 5 and )\ is due to the opposite orientation
between the polar and the dip angle.
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From this matrix one sees that the rotations dvy, df imply, due to the
definition of the transverse reference frame, also a rotation around the z |
axis by an angle da = tan A dv.

In terms of the SC variables, where A and ¢ are defined in MARS, with
the help of egs. (25), eq. (26) reads:

x| 1 cos Ad¢ dA T,
Y, | = —cosAdo 1 sin Ad¢ n (27)
2z —dA —sin Ad¢ 1 zZ|

The infinitesimal transformation (27) defines the following rotation vector:

rotation around x| sin A do
d@ = | rotation around y, | = —dA (28)
rotation around z cos A do

Now we have to find the matrix elements of

oeiia

+ (Aita + Biiar) de,

(29)
where e is the track defined in the SC system.

The multiple scattering effects will be considered in sect. 6, the energy loss
ones, that add a random noise variance o?,(l) in eq. (14), will be discussed
in sect.7.

Firstly, we consider the matrix A; 4 - dl, which propagates the errors
without taking into account the magnetic field. In this case the track runs
along a straight line and the derivatives involving A and ¢ are zero. The non
zero terms are due to the uncertainties in the position dy, and 6z, at [ which
propagates linearly at [ + d/ on some track variables. They affect:

1. the momentum 1/p. This uncertainty arises from the mean energy loss
calculation, which depends on the thickness traversed: any uncertainty
in 6(1/p), due to an uncertainty 6( d/) will change while decreasing the
momentum. Note that this uncertainty is different from the energy
straggling, which is the dispersion around the mean value and that will
be treated in sect. 7. For this error one finds (for a detailed derivation
see Appendix C):



- dz}a(—)l (30)

2. from the first of eqs. (25), where in this case [ = dl and the small
uncertainties are approximated as differentials, one has

aZJ_
Apa(5,2)-dl=—= di;
l+dl( ) ) 8/\ 3
3. from the second of egs. (25) one has
Ay
Anqa(4,3)-dl = 8—5 = cos A dl ;

In summary, for the term I + A;, 4 - dl we have obtained:

dZ%
5(1/p) ( 1+ (j’f) .dl 0 0 00 \ 5(1/p)
5 (%) 5)
0g = 0 1 0 00 5o
oYL 0 0 1 0 0 0y
0z1 Ldl 0 0 cosAdl 1 0 0z l
\ 0 1 0 01

From this, matrix A follows:

(31)

cos A

—_ o O O
oS O OO
o O OO

Now we consider the matrix B.
In this case we have to consider the effects of the deflections due to the
magnetic field B. The key relations are the Lorentz force and the helix

15



equation for a particle of momentum p and charge g. When the field is along
the z axis and the trajectory lies in the z-y plane, these equations become:
{ p = gRB=-HR dl

d — Rs > do=-H_ . (32)

where in the last passage the curvature radius R has been eliminated and
H = +0.3-107% GeV/(cm kG) ¢B; the sign refers to negative or positive
charged particles, respectively.

Now we have to generalize the equation above in the SC system for any
orientation field-particle momentum. To this end we consider the field H =
(Hy, Hy, H3) in the SC system and apply, for any component, eq. (32). The
azimuthal angle ¢ transforms in the rotation vector (28) and we have:

dl H/p do sin A do
d0=—-H—=—| Hy/p |-di=| dp | = —dA . (33)
p Hs/p d~y cos A d¢

Note that |df|2 = dA\* + d¢* as shown in fig.6

do

Figure 6: The geometry of the helix in the MARS system. The analog in the
SC system is eq. (33).

Eq. (33) means that the momentum vector of the particle with momentum
p is rotated by a magnetic field H over a track length d/ by an angle df
with rotation axis parallel or antiparallel to H.

16



To transform the magnetic field components H = (H,, H,, H,) measured
in the MARS system to the components H = (H;, Hy, H3) the the SC system,
one has to apply eq. (9). For a detailed calculation see Appendix D:

Hy = H,cos¢p + Hysing = —dHy/d¢
H, = HycosA + H,sin\ = —dH;3/dA\ (34)
Hy, = —Hgsing + Hycos¢ =  dHy/d¢
H; = —HysinA\ + H,cos\ = dH;/dA

Now from eq. (33) we obtain:

( 32 > il ( H?,_/IC?SA > (35)

After this passage, we finally are able to calculate all the derivatives of the
matrix B by using eq.(29). The track parameter variations are calculated at
first order:

Oe;
eJ I+dl — Z 8ej 5 ) where e = [1/pa /\7 ¢a Y, ZJ_] : (36)

For the angles, from eqgs. (35, 36) we have:

—H, —H, —H,

5 ( 32) —( H, ) d1-6(1/p)—2 ( H, )5(d1)—ﬂ5< H, ) .
bl cos A P\ Cosa P cos \
(37)
Here the term §( dl) appears that has to be calculated explicitly. Since in the
SC system the x| coordinate is a known parameter that defines the transverse
plane, we have §(z,) = 0. This constraint usually implies 6(dl) # 0 (see
fig. 7), and this uncertainty has to be assigned to z, since y, and z, lie on

the plane £, = const. transverse to the track direction. At [ then we have:

5.’13J_ 0
Sy = | dy. . (38)
5ZJ_ 5ZJ_

l l

Therefore, by using eq. (27), in the SC system the spatial variation must be
written as:

0 1 cos Ad¢ dA 0 d(dl)
oyL = | —cosAd¢ 1 sin A d¢ oyr | + 0 (39)
0z Lrdi —dA —sin Ad¢ 1 0z . 0

17



XLZ const.

Figure 7: The tracking in the SC system: the curvature effect of the magnetic
field gives §(dl) # 0.

The first row of eq. (39) gives the required relation for ¢(d/):

d(dl) = —cosAdo-d(yr)— dr-d(zL), (40)
H H.
= rdid(yi— =R dl-o()
where the last member, which contains only the differential di as required,
is deduced from eq. (33).
The last step is to develop the apparent variation of the magnetic field

due to the parameter uncertainties, that is the last term of eq (37). By
differentiating eqs. (34) according to eq. (29) one obtains (see Appendix E):

g ( HJ?ZA )l - ( —HO/OCOSZA ) Wit ( —talrfOAHQ ) 2@k (41)

From eqs. (26, 29, 33, 35, 37, 39, 40, 41) one finally obtains the desired

18



form of the B matrix:

( 0 0 0 0 0 \
H, 0 —Hy/p H2H3/p2 _H22/p2
H3 H() Hgtan)\ H32 H2H3
B— cos A pcos? A P p?2cosA  p?cosA (42)
H
0 0 0 0 _Hstan A
p
Hjtan \
\ 0 0 0o  =2Ans o
p

For example, the term in the fourth row is obtained from eq. (33) in the
following way:

. sin A\H5 dl
SWL)ivar = O(yoL)i +sinAded(zr) = d(yL) — W d(z1 )
Hstan A
= 5(yL)l — 37 dlé(ZL)l
and hence, from eq. (36):
Byis— Oy )irar _  Hz tan al .

’ O(zL)i P
where egs. (33, 39) have been used.

The matrices deduced in this section are calculated by the GEANE rou-
tine TRPROP. In this routine the energy loss term A(1,1) in eq. (31) is not
considered.

By using the option 'E’ in ERTRAK, the routine TRPRFN is called in
alternative, which calculates the propagation in a finite step length assuming
an exact helix trajectory. However, this option should not be used in a
realistic case.

6 Multiple scattering effects

The two quantities of interest in the multiple scattering process are the dis-
placement A and the scattering angle . The theory of Moliere, that finds

19



the statistical distribution of 6 is reviewed in [10] (we refer the reader to
the references therein for an essential bibliography). The distribution can be
approximated as the sum of two gaussians, a core one that takes into account
the bulk process and a flat one that describes the tails.

In the small angle approximation, it is more convenient to work in term
of projected scattering angles. If the particle runs along the z-axis, the
deflection # can be represented as a segment in the x — y plane where 6, =
0 cos ¢, 0, = Osin ¢ and 6> = 07 + 67 (see fig. 8).

In a plane, the two quantities of interest in the multiple scattering process
are then the displacement x and the projected scattering angle 6, = 6, = 0,
(see fig. 8). The 6, total projected variance for a particle of momentum p (in

I

Figure 8: The multiple scattering angle 6, and the displacement x through
an absorber.

GeV/c) that travels through an absorber of thickness d is expressed as [10]:

225-107% d Z +1 In(287 Z~1/?)
02 >= X, =X
< es T px, "7 In(159Z 173)

(43)

where X is the radiation length of the absorber.
The standard practice is to parametrize the core variance as [11]:

2 2
% [1 +0.038 In (Xi())] (44)

However, this variance should not be used in track following for two reasons:

2 o _
<0p>—

20



1. it is not the whole variance, so that the pull quantities show an under-
estimation of the multiple scattering errors;

2. the thickness contained in the logarithmic term makes the calculation
dependent on the tracking steps. Indeed, to make the calculation in-
dependent of the layers in which an absorber is divided, the variance
should be directly proportional to the thickness d, as in (43).

Hence, we emphasize that the variance (43) should be used, which is the
result of the accurate treatment of [10]. In this case, slight deviations from
the gaussian form of the pull distribution have to be expected, since the angle
distribution has non gaussian tails.

In GEANE the following formula is used:

<2 >e 184.96-107% d
B p? 62X .

p
We substituted this formula with eq. (43). The results improve only slightly
the pull distribution (Agrant — Atrue)/0crane of the dip angle (fig. 9) since,
for most light scatterers, the ratio X/ X, ~ 1.15 is near to the ratio 225/185 =
1.21 [10].

(45)

§1.57
>
c [
@ L
<
< 1.4
13 oLD
Lo
~ o}
1.2 prm
F i —~_ NEW
111 ]
: e
1 i
T\\\\\\\\\\\\\\\\\\\\\\\\\l\\\\\\\\\\\\\\
GeV/c

Figure 9: Behaviour with energy of the o of the pull distribution of the dip
angle \. OLD with eq. (45), NEW with eq. (43).
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The multiple scattering treatment in track following codes is based on
the joint probability distribution of the lateral displacement x and of the
projected angle 6, for an absorber of thickness d. This distribution, that
probably goes back to Fermi, is deduced in the famous old book of Rossi

[12]:
2v/3 1 4 0> 320, 3x?
P, b3 d) = = <62>d? eXp[_<0§>(E_ 2 B

From this distribution it is straightforward to obtain the following variances
and covariances [1, 11]:
2 2
<0,>d
3 7
In a tracking problem, the naive multiple scattering variables for a particle
running along the z-axis making small angular and lateral deviations are:

<0>>d

<z,0,>=
P 2

<br>, <z’>= (46)

S; = [07 Y, 03/7 Z, 02] ) (47)

where the five positions are considered for compatibility with the track for-
malism. GEANE treats multiple scattering effects in the SC system

ti = []-/p7 /\a ¢: Y, ZJ_] ) (48)

which is the most natural one in this case. The transport in the SD system,
when necessary, is made through the internal service routines of the code.
From eq. (25), and considering that the angles 6,, 6, are small, one finds the
following correspondence:

0y
cos \ ’

)\E—Oz, ¢E

"JJ_E:U, ZlL=Z. (49)

Note that in these formulas cos A, which is the track angle before the multiple
scattering act, is simply a parameter. In what follows, the projected angles
6, = 6, = 0, are supposed uncorrelated, that is < 6,,6, >= 0 (although
uncorrelated, they are not independent! [10]).

To transport the errors from the multiple scattering reference to SC, we
use the standard error propagation [13]:

ot; ot;
<ti,tj >= E a—&ﬁ<sl,8m> . (50)
ilm
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Taking into account (46, 47-49) and writing only non-zero terms, we easily
obtain the elements of the multiple scattering covariance matrix in the SC

system [1]:
<A >

<A z>

= <02>=<0 >,

= —<bz>=—
P’Z 2

2
<9p>

cos? \

<0>d

b

<0r>d

2

(51)
(52)
(53)
(54)
(55)

(56)

The transport of the multiple scattering errors is then given by the symmetric
matrix W' in eq. (14). Since in the track transport formalism the thickness
corresponds to the tracking step, d = dl, the final form of W' in the SC
variables 1/p, A, ¢, y., 2z, is

(0 0

0 0

0 0
< 62> < 62> dl
cos? \ (2cos \)

<6r> dl <62 > (dl)?

(2cos \)

3

0 <6 >
0 0
0

\0 _<0§2> dl

< 62> (di)?

3

(57)

This is the matrix used by GEANE (routine ERMCSC). In the version for
PANDA, we use eq. (43) instead of eq. (45) for < 62 >.
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7 Emergy loss fluctuations

The fluctuations in ionization for one particle of charge z, mass m, velocity
[, are characterized by the parameter k&,

e (59)

which is proportional to the ratio of mean energy loss to the maximum al-
lowed energy transfer E,,, in a single collision with an atomic electron:
2m. 3%y

= T3 2ym/m + (mojm)? (59)

max

where v =1/4/1 — 32 = E/m and m, is the electron mass. The parameter
¢ comes from the Rutherford scattering cross section and is defined as [11]:

— 153427 00 (k
& =153. 52—Ap (keV) , (60)
where p, d, Z and A are the density (g/cm?), thickness, atomic and mass
number of the medium.
The parameter s takes into account both the projectile energy and the
geometrical thickness of the absorber; it defines univocally the absorber char-
acteristics, that is the straggling conditions [15]:

1. for heavy absorbers, x > 10 and the distribution is gaussian;

2. for moderate absorbers, 0.01 < x < 10 and the distribution follows
the function of Vavilov [15], that tends smoothly to the gaussian by
increasing the thickness;

3. when k < 0.01, we are in the presence of thin absorbers. When the
number of collisions N, > 50, the distribution follows the Landau func-
tion [15];

4. for very thin absorbers, N, < 50 (the condition £ < 0.01 is implic-
itly fulfilled) and there are no universal straggling functions, but only
approximated models [14]. We will call this as the sub-Landau condi-
tion or regime; it is the dominant one in gaseous detectors at PANDA
energies.
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Amax @ Mean Oq
11.1 0.90 1.61  2.83
22.4 0.95 240 4.23
110.0 0.99 4.19 10.16
200.0 0.995 4.82 13.88
256.0 0.996 5.08 15.76
339.0 0.997 5.37 18.19
507.0 0.998 5.78 22.33
1007.0 0.999 6.48 31.59

Table 1: Result of the integration o = [, /\)‘ ™2 f(A)dX of the Landau distri-
bution from Ay, =~ —3.5 to Apax of the table. The mean and the standard
deviation of the truncated distribution are also shown. For this distribu-
tion. the full mean and the variance are infinite, only the cumulative can be
calculated.

For the cases 1. and 2. the straggling problem has a definite solution, both in
simulation and in track following, because the general theory of the moments
of the energy straggling distribution, based on the transport equation [9)],
shows that the energy variance is given by:
§2
;(1 - 52/2) = { Emax(1 - 132/2) : (61)
For the Landau distribution, that assumes E,,,x = 0o, both the average and
the variance are infinite [1, 13] (see Tab. 1).
Taking into account the energy-momentum equation
dp F 1

E2:2 2 — - =
p-+m dE » ﬁ’

o?(E) =

and the error transformation
1\1? 1 E?
o’(1/p) = [% (5)] o?(p) = —~ o?(p) = = o*(E)

we obtain the variance on 1/p. This quantity is calculated by GEANE in the
routine ERLAND and added to the covariance matrix oy; of eq.(14) in the
routine ERPROP at the end of the tracking step:

E? E?
() = 5 0*(B) = 5 EBun(1 = 57/2) (62)
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Since this is the only energy straggling considered, the GEANE results are
completely unreliable for thin layers, where the Landau or sub-Landau con-
ditions 3. and 4. often are verified.

To remedy to this situation, we have implemented the PANDA version of
GEANE with the procedure explained below, that has been inserted in the
old GEANE routine ERLAND.

Firstly, we note that, for thin and very thin absorbers, a rigorous solution
exists for the simulation but not for track following. Indeed, whereas in the
simulation the sampling and the tracking of the d-electrons reproduces cor-
rectly some rare effects in the detectors or the noise characteristics, in track
following the long tail of the energy lost by the particle, due to the j-electron
emission, makes the energy straggling variance infinite (for the Landau dis-
tribution [1, 13]) or so big (in sub-Landau models [14]) that the uncertainty
in the track momentum is meaningless, because these fluctuations refer to
“enormous” energy losses occurring with very low probability.

Since an universally accepted solution of this problem at present does not
exists, we use some approximations based on truncated distributions. In the
Landau regime we consider the Landau variable

_ E - Emed
3

where 7' = 0.57725 is the Euler’s constant, and we cut the Landau distribu-
tion fr(\) to an area «, corresponding to a value o, given by tab 1. Then,
from eq. (63), for the Landau case we assume:

A —1++ - —Ilnk (63)

o(E)=¢o0, . (64)

For example, for a = 0.95 we have, from tab. 1, o(F) = 4.23¢.

In the sub-Landau case we have the further difficulty due to the non
existence of a straggling density in a closed analytical form [14]. In this case
we decided to use a variance value obtained from the Urban model [16], which
is one of the models used to sample the energy lost by the particle in very
thin absorbers both in GEANT3 and GEANT4 [15].

The Urban model is based on the following formulae [16]:

- excitation macroscopic cross sections Y; and Xo:

—-C fz ln(2mﬁ2’)/2/ei) - 52
T Ein(2mB*y?/T) — 5
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where:

0ifZ <2
I=162% (eV), f2:{2/ZifZ;2 » fi=1-1
I 1/fl E d
=1022% (eV = =04, C =226
€9 (e )7 €1 <e£2> , T ) A./L' )

and Epeq = (dE/dz)- Az is the energy lost in the absorber of thickness
Ax;
ionization macroscopic cross section s:

Emax
I(Boae + D 10((Bmax + D) /1)

2320

number of total collisions V,:

Nc: (21+22+23)A$:N1+N2+N3 . (65)

total energy lost:
E = (31e1 + Xoey + 33E3)Ax = Nyey + Naeg + N3Ej | (66)

where e; and ey are the two fixed excitation energies of the model
and Fj is the energy lost by d-electron emission. This is a stochastic
quantity that follows approximately the distribution [16]:

I(Epax+ 1) 1

Ej ~ g(E) where g(E) = E 2
max

I <E < Epa+1. (67)

In GEANT3 and GEANT4 the energy FE is obtained by eq. (66) by sampling
Ny, Ny and Nj from the Poisson distribution and Ej3 from g¢(E). This last
sampling gives (unlikely) strong fluctuations: for example, for 1 GeV pions in
1 cm Ar we have Foq ~ 2.5 keV, F.x ~ 66 MeV and a standard deviation
of about 100 keV due to the J-electrons tail.

We decided here to truncate the Urban distribution, considering a stan-
dard deviation representing a percentage a of the area of the d-electron energy
distribution (67):

I Emax I Fa max a
( +)/ idEz(E +I1)E I:a
Fmax ;  E? Fhax E,
I
— E, =

1 — aFnax/(Paax + 1)
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The mean and variance of the truncated distribution are:

I(Epmax + 1) I(Epmax + 1) In (&)

E,
E = - 7 Fo(E)dE =
(Ey) e / 9(B) - -

I(Emax +1) [ I(Emax + 1
(E5) = %/f EQQ(E)dE=%(Ea—I),

Ug(E;;) = < Eg > =< E3 >2 . (68)

Then, the error propagation applied to eq. (66), where Ny, Ny, N3 and FEj
are random variables, gives:

0(E) = Nie? + Nye2 + Ny (E3)* + N3o2 (E5)(Ns + 1), (69)

where the last two terms come from the variance of a product of two random
variables (see Appendix F). For values o > 0.99, this variance goes smoothly
toward eq. (64) while increasing the absorber thickness.

Now we have to choose for o the values that are useful for our track
following. Firstly, we note that the 1/p pull spectra obtained with GEANE,
in the case of thin absorbers, are composed of a peak, a shoulder near the
peak and a very long and flat zone with very few events extending to the left
(or the right) of the distribution. The area of the peak plus the shoulder is
> 99% of the total area. We choose « to have a unitary RMS (0 ~ 1) for
the peak plus the shoulder (see fig. 10).

Using this criterion, after many tracking tests through the PANDA ap-
paratus, we found that a meaningful error propagation, taking into account
the core of the distribution and excluding the long -electron tail, is obtained
with values

0.995 < a < 0.998 , (70)

In summary, our algorithm calculates the variance of eq. (62) with a variance
o%(F) calculated as follow:

a. for big and moderate absorbers when x > 0.005, the variance 0?(F) is
given by eq. (61) (old GEANE method);

b. for thin absorbers, x < 0.005, when the number of collisions from

eq. (65) is N, > 50, 0%(F) is given by eq. (64) with a = 0.996 and
0o = 15.76;
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Figure 10: Pull distribution A(1/p)/o for 1 GeV muons after passing through
the PANDA straw tube detector. Left: Standard GEANE result (RMS~ 0.3
in the displayed window); right: result after the modification with o = 0.995
(see the text). The region between the vertical lines has RMS= 1.03.

c¢. for very thin absorbers, when « < 0.005 and N, < 50, the variance
o2(E) is given by eq. (69). The default value for the area considered is
o = 0.996.

In the new GEANE version, the parameter « is under the control of the user
and can be modified (see sect. 9). If one sets & = 1 the run uses the old
standard GEANE and eq. (61) only is used in the straggling calculation.

Finally, we note that the treatment of the uncertainties due to the en-
ergy loss reported here is somewhat arbitrary and based on approximations.
Therefore, it has to be tuned, carefully checked and progressively improved
by exploiting the experiences of the PANDA users while simulating the ap-
paratus.

The effect of the modifications for PANDA is displayed in fig. 10.

A further improvement could be the inclusion of the fluctuations due to
bremsstrahlung for electrons and positrons. This aspect is under study.

8 Use of GEANE in PANDA

The integration of GEANE in pandaroot has been performed at two different
levels:

29



e changes to the class TGeant3 to include all the COMMON data blocks
and the functions of the old GEANE;

e changes to the framework with the addition of the new package ” geane”
with a new C++ interface and some new functionality.

In principle it is possible to call GEANE with the old interface via the
VMC class: for this it is sufficient to use a global pointer gMC3 to an object
of type TGeant3 and all the historical functions of Geane can be directly
used. However in this case input and output handling has to be carefully
checked: data structures that map the Fortran COMMON blocks have to
be prepared and the output has to be correctly decoded to get meaningful
results.

As an alternative a new interface from the pandaroot framework to GEANE
is available which simplify the GEANE use and hides the old interface to the
user: the new interface is based on a package where the calls to the GEANE
code are organized in a set of 5 C++ classes. The classes are the following:

e class CbmGeane (inherits from TObject):

used to initialize GEANE and to read the magnetic field map from the
simulation output file;

e class CbmGeaneHit (inherits from CbmHit which inherits from TO-
bject):

used to store the track parameters and their errors before and after the
extrapolation into the pandaroot tree (permanent);

e class CbmGeanePro (inherits from TNamed):

used to perform the track extrapolation (here are the calls to the old
Fortran routines EUFIL/V/P/L and ERTRAK);

e class CbmProHit (inherits from TObject):

used to store the extrapolation results in memory (transient);

e class CbmGeaneTr (inherits from CbmTask which inherits from TTask):
used to run GEANE as TTask.
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The track following is driven by a macro and results are stored in a ROOT
tree.

In the new interface we plan to add new functions used to solve some
advanced and specific problems. For instance, let consider now the practical
case of a user that has found in the MAster Reference System (MARS) the
track momentum p by a prefit in a point = (z,y, 2) of the apparatus. To
track from x to a detector D he/her has to do, first of all, a transformation
from MARS to SC; then there are two options:

1. to work in the SC representation controlling the track length or the
tracking volume;

2. to track in the SD representation to the detector planes.

In any case the user will need a routine missing in GEANE that should be
present in the interface: to go from MARS to SC. The passage from SC to
SD can be done with the other interface routines. We will call this routine
From_MARS_To_SC (see tab. 8) and will give here the useful formulas for
coding it.

By recalling eqgs. (3-5), we can write the SC axes as:

e along the momentum p:

), = (zL-z)z+(zL-yYy+(eL-2)2 (71)
= (cos Acos ¢, cos Asin ¢, sin \)

e y, = (zxx,)/|zxx,|in the z—y plane of MARS and perpendicular
to p:

Yy, = (yo-o)e+(y-yy+(yL- 2)z (72)
= (—sing, cos ¢, 0)

where y |, and y are oriented in the same sense;
e r XY, =2z]:

zL = (zr-@)e+ (20 Yy + (20-2)2 (73)
= (—sinAcos¢, —sin A sin@, cos \)
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If the prefit has given the quantities (1/p, A, ¢) and (z, y, z) with their errors
(variances and covariances o;;) in the MARS system, we can find the errors
on y, and z,. If we suppose no correlation between (1/p, A, ¢) and (x,y, 2),
from eqs.(71-73) the transport matrix 7 is given by:

dl/p 9l/p 9dl/p 9l/p 0O1/p
81;\1) D) O Ay oz
é) A [N [N [N

dl/p oA o¢ Oy oz
T o_ | 9 o 9 ab ol (74)

1 0 0 0 0

0 1 0 0 0
= 0 0 1 0 0

0 0 0 (yr-y) (y.-2)

0 0 0 (z2L-y) (zL-2)

where we considered the transformations (72) and (73). The equation (71)
on z is not used because in SC we are on a plane of known coordinate x| .
The variances and covariances of (1/p, A, ¢,y , 2, ) are given by

= Y Tt 2
kl

Once the input quantities have been prepared bu calling the methods Propa-
gateToPlane(), PropagateToVolume() and PropagateToLength() of the Ch-
mGeanePro class, the tracking can be realized by calling the Propagate()
function in the CbmGeanePro class which interfaces the GEANE routine
ERTRAK. The input/output sequence of this routine should be:

ERTRAK:

INPUT

X1(3) = starting point (z,y, z) in MARS

P1(3) = starting momentum 1/p, A, ¢ in MARS
IPA = GEANT particle code

CHOPT =

B = backward tracking

O = tracking without transporting the errors

32



E = approximated but faster error calculation

L = tracking in SC variables according to the prescribed length
defined in EUFILL.

P = tracking in SD variables up to the prescribed planes defined
in EUFILP

V = tracking in SC variables to the prescribed volume defined in
EUFILV

An example of command could be for example 'BP’. The checks on
consistency are made by the routine and trigger a printing (ERTRAK
Format 779). A modification could be to transfer an error flag to the
interface macro.

ouTPUT

X2(3) = final point (z,y,2) in MARS

P2(3) = final momentum 1/p, \, ¢ in MARS

IERROR = flag for error conditions (see Format 777, 778 and 779)

The complete output is stored in COMMON blocks and therefore in the
Virtual Monte Carlo C++ structs, easily accessible.

The information that have to be taken from the COMMON and passed
to the user, step by step, are listed below. They are given in the system (SC
or SD) requested by the tracking routine ERTRAK:

ERRIN[15] the input covariance matrix in symmetric form;
ERROUT(15] the output covariance matrix in symmetric form;
ERXIN[3] starting coordinates (note that X1 of ERTRAK is in MARS);
ERPIN|[3] starting momentum (note that P1 of ERTRAK is in MARS);
ERXOUT(3] output coordinates (note that X2 of ERTRAK is in MARS);
ERPOUT]|3] output momentum (note that P2 of ERTRAK is in MARS);
ERTRSP[5,5] transport matrix in single precision;

ERDTSP[5,5] transport matrix in double precision.

Some macros to get this information could also be useful during tracking and
Kalman filter coding.
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Ve

Class Function Purpose Old GEANE Notes
correspondence
CbmPro From MARS_To_SC go from lab system (MARS) none in preparation
to SC system
CbmPro From_SC_To_SD go from SC to SD system TRSCSD in preparation
CbmPro From_SD_To_SC go from SD to SC system TRSDSC in preparation
CbmPro From_SD1_To_SD2 go from an SD system TRS1S2 in preparation
to another SD system
CbmPro PropagateToVolume prepare for tracking EUFILV initialization
CbmPro PropagateToPlane prepare for tracking EUFILP initialization
CbmPro PropagateToLength prepare for tracking EUFILL preparation
CbmPro Propagate (V option) perform a tracking step ERTRAK tracking
CbmPro Propagate (P option) perform a tracking step ERTRAK tracking
CbmPro Propagate (L option) perform a tracking step ERTRAK tracking
CbmGeaneHit GetP1,GetLambdal,GetPhil get initial track parameters none output
GetfY1, GetfZ1
CbmGeaneHit GetErrorMat get the initial 15-dim covariance none output
matrix
CbmGeaneHit GetP,GetLambda,GetPhi get final track parameters none output
GetfY, GetfZ
CbmGeaneHit GetErrorMat get the final 15-dim covariance  none output

matrix

Table 2: list of the possible functions for an interface with GEANE



Since the error matrices are symmetric, GEANE uses 15-dim vectors.
On the contrary, the transport matrices are 5 x 5, so that in GEANE some
routines perform matrix algebra with symmetric and square matrices. The
transformation from a 5 x 5 symmetric matrix to a triangular 15-dim vector
is based on the correspondence

1
1,1

2 3 4 5 6 7 8 9 10 11 12 13 14 15
1,2 1,3 1,4 1,5 2,2 2,3 2,4 2,5 3,3 3.4 3,5 4,4 4,5 5,5

Another important aspect for the user is the correct definition, through
the data cards of the modified GEANE version, of two parameters that con-
trol the calculation of the energy loss:

GCUT(1):

CUTS(8):

is the parameter o defined in sect. 7, that represents the truncation
of the area of the d-electron energy distribution. It has been intro-
duced by us in the new GEANE version for PANDA. We put as default
value @ = 0.995, but the user can modify it if the pull distribution of
the momentum is not satisfactory. If one puts o = 1 the energy loss
calculation follows the old GEANE method (se sect. 7);

this is a GEANT parameter of the string CUTS, present also in the
old GEANE version. This parameter during the simulation is the up-
per limit of the energy of the truncated continuos energy loss and the
threshold for the J-ray production. The important difference is that in
GEANE, that uses the GEANT routines to find the track mean values,
the d-ray production is not considered; hence, the truncation of the
Landau (or straggling) distribution is not followed by the calculation
of the energy lost by d-electron production. This has for the user the
following important effects: if DRAY is small and the Landau distri-
bution is truncated, the average enerqy is near to the mazrimium of the
distribution; if DRAY is high (i.e. 10 TeV) the tracking follows the full
straggling distribution and the tracked value is the average one.

The choice on what value has to be used depends on the specific case.
The standard choice should be the tracking according to the full energy
distribution to obtain the mean value. For this reason we put DRAY
= 10 TeV as the default value.

Finally, we note that this aspect concern the calculation of the average
values only, whereas the error propagation depends on the calculation
of the covariance matrix, which is practically independent of this dif-
ference on momemntum mean values.
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The full GEANE fortran code is available in every standard FairROOT in-
stallation in the cbmsoft/transport/geant3 directory. Moreover the complete
cards of GEANE 3.21 can be downloaded for example by:

http://xrootd.slac.stanford.edu/BFROOT /src/geant /94b/geane321.car

9 Some results with the PANDA geometry

We checked the GEANE performances with a set of simulated data with
the PANDA geometry. The multiple scattering has been simulated with the
Moliere distribution.

The pull or standard variables

T — (-TGEANE - Xs’im)

, x=[1/p, A ¢,y,2]
OGEANE
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Figure 11: Pull distributions of the 5 track parameters in the case of 2 GeV
muons that have passed through the whole detector, just before the PANDA
magnet.
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Figure 12: Pull distributions of the 5 track parameters and of p,, p,, p, in
the case of 2 GeV muons after passing through the 22 layers of the straw

tube detector only. For the 1/p histogram dispersion up to the dotted line
one has RMS= 1.08 (top left).

for the 5 track parameters are shown in the case of 2 GeV muons in a plane
immediately before the magnet are shown in fig. 11, wheras the same quan-
tities after the straw tube detector are shown in fig. 12. The shape of the
distributions, apart from that of 1/p, is near to the standard gaussian with
o[T] ~ 1, as expected.

The root mean square (RMS) of the coordinates y and z is ~ 1 for
the raw simulated data, whereas the fitted gaussian has ¢ ~ 0.9. This is an
expected effect due to the non gaussian tails of the Moliére multiple scattering
distribution.

The agreement between the track following and the simulation is good.
Results of similar quality are obtained between 0.5 and 10 GeV, with detec-
tion planes put in different positions of the PANDA apparatus.
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Figure 13: Behaviour of the o of the 1/p pull distributions with energy,
parametrized with the truncation parameter a of tab.1.
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Figure 14: Pull quantities for the momentum components p,, py, p, for 5
GeV pions after the whole detector immediately before the PANDA magnet.

The uncertainty in the error calculation for 1/p has been explored as a

function of the truncation parameter o of tab. 1. The suggested value for
PANDA is a = 0.996. The value o = 1 uses the original GEANE calculation

(see sect.7).
In figs. 12 and 14 the pulls of the momentum components for muons and

pions are shown. These plots are important to test the correctness of the
1/p error propagation and of some non diagonal elements of the GEANE
covariance matrix. For example, p, = pcos A cos ¢ and

=cos Acos ¢ ,

Opa
oA
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the variance is given by
Ops
o?[ps] = z F olzi, z;] , olzi,z) =02, (76)
ij ¢

where z; = [p, A, ¢] and the non diagonal elements of the tracking covariance
matrix involved in the calculations are o[1/p, A], o[1/p, 8], o[\, ¢]:

0-12) = p40'%/p ) 0-[pa )‘] = _p20-[1/p’ )\] J 0[pa ¢] = _p20-[1/p5 ¢] .

10 Application to Kalman filter

One of the best ways to understand the filter algorithms, as the Kalman one,
is to start from the x? minimization

2 2

XZ(U) — (mlo;u) + ('x?(;%:u) (77)

obtaining, with the equation dx*(u)/0p = 0, the well know estimation of p
through the average of the two measured values x; and zo weighted on the
two errors oy and oy:

_ z1/0% + 29/03 Var[y] = 1 _ ot o} (78)
1/o2+1/0? 1/o?+1/03 o? 402"

The estimator (78), in the case of gaussian variables, exploits the properties
of both the Least Squares (LS) and Maximum Likelihood (ML) estimators
[1]. This is elementary statistics.

After a simple algebraic manipulation, one can write eq. (78) in the so-
called recursive form:

u = T+ 2($g—$1)Exl+K($2—fE1) (79)

o? + 02
Var[y] = of —Ko; =(1—-K)oj, (80)

where the term multiplied by the gain factor K appears as a correction to
the initial value z; in eq. (79) and as a reduction of the initial uncertainty
o1 in eq. (80).
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Now we consider the track points of Fig. (15) and try to find the best
estimation of the true track point f; at the i-th detector plane by minimizing
the x2 (see Tab. 3 for the meaning of the symbols):

XQ(f) = Z[(ei[fi—l]_fz')Wi—l,i(ei[fi—l]_fi)]+(wi_-fi)vi(wi_-fi) (81)

In this equation we emphasize that the extrapolation e starts from the true
points f, and that for this reason to these points is associated the weight
matrix W containing the tracking errors only. Remember also that the bold
face symbols recall that we are dealing with 5-fold vectors considered at the
i-th detector plane and with 5 x 5 matrices (written in capital letters).

The minimization of eq. (81) gives:

02

3—.fi = Wi (elfii]— Fi) +Vixi - f)) (82)

—T(liy1, 1) Wiis(eialfil — fi) =0,

where eq. (12) has been used. The first two terms appear usually in y?
minimizations (producing the weighted average estimator between the ex-

\%

measurcd

true
trajectory

tracker

X measured point

detector
f true point  (final)

e(f) extrapolated by the tracker

Figure 15: Definition of terms in eq. (81).
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trapolation e and the i-th measurement x), whereas here appears an extra
third term, due to the f-dependence of the track follower operator G(l,) =
e;(fi-1)-

The Kalman filter is precisely a method to solve eq. (82). It was originally
proposed in 1961 by the MIT engineer Kalman in the framework of the control
and optimization theory of systems [7] and applied successively in particle
physics as a useful track fitting technique [8].

The resolution of eq. (82) is cumbersome. A rather clear demonstration
can be found in [5]. Here we report the solution in the form of the so-called
three-steps Kalman filter algorithm [5, 1]. In what follows the notation o?|-]
will be used for the covariance matrix of a track vector.

The first step is the extrapolation with eqgs. (10, 14) of the previous
Kalman value k;_; to the i-th plane:

e = ei(k:i_l) :G(kz_l) (83)

o’le]] = T(lili1) o[k 1] T (I liq) + Wi, (84)

The second step is the calculation of the Kalman filter value at the i-th
detector plane:

k,’ = 0'2[ki] (0'_2[62'] €; + Vza:z) (85)

o k] = o ?[e)]+ V; (86)

These equations are simply the weighted average (78) in the 5-fold track
space.

The third step is the backward smoothing of the Kalman point solution
of the second step:

Fi = kit Ai(fip1—eir1) (87)
o’[fi] = o’lki]+ A (0°[fir1] — o’leir1]) A (88)
A; = )T (lip1, 1) 0 *[eir] (89)

After these three steps one obtains as a solution the track points f, and their
uncertainties at the i-th plane. These values are the solution of eq. (82), that
is the best estimate, in the LS sense, of the true track.
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® the point

® X measured
X O e GEANE

® k Kalman

O f final

Figure 16: Extrapolation (GEANE), Kalman filtering and smoothing at the
i-th detector plane (see the text for details).

The scheme of eqgs. (83-89) is sketched in Fig 16.
The second step, the Kalman filtering, can be also expressed in the gain
K-matriz form, similar to egs. (79, 80) [8]:

o?lk;] = (I- K)o?[e (91)
K, = o’le](V'+o%e]) ™. (92)

Up to this point we supposed that the track follower and all the measured
points are expressed with the same set of track variables. To take into account
that this could not be the case, sometime a matrix H is introduced, which
makes comparable the two representations:

;= He +¢, (93)
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where € is the random part introduced by the measurement. The expression
of the filter with the H matrix explicitly written can be found in [1, 8].

11 Conclusions

The first aim of this report is to collect and write explicitly all the useful
formulae for the error propagation in track following. The basic element is
the transport matrix of eq. (12):

o€ ()

Tl h) = 550y

where e(l) is the extrapolated trajectory with track length [ with error de(l):

Se(ly) = T(ls,1;) Se(l,) .

The error propagation is then obtained with the fundamental formula (14)
that we rewrite here:

o?(ly) = T(ly, 1) 62 (1) T (g, 1) + WH(ly) (94)

In this scheme the calculation of the transport matrix is made by repeated
applications of an infinitesmal (numerically small) transformation (dl = (ly—

ll)/n):

n

Tlg,ll _(}llg%] F]

Then, the track following problem con51sts, first of all, in finding the
matricial form of the infinitesimal operator F', that in GEANE is written in
term of two matrices A (without magnetic effects) and B (that contains the
magnetic effects):

F, =1+ (Aja+Bia)-dl,

The explicit form of the matrices A and B has been given in egs. (31) and
(42). This solves the first term of eq. (94), which propagates the errors step
by step.

At each step, the multiple scattering and energy loss effects are supposed
incorrelated and are added in the matrix W', The explicit form of the
multiple scattering error matrix has been given in eq. (57), where the value
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of the GEANE r.m.s. multiple scattering angle has been corrected using an
expression taken from [10].

Then, the energy loss fluctuactions, that have to be put in the place
W', have been considered. It is important to note that this point has not
a rigorous solution in track following, because the fluctuactions in very thin
absorbers give a variance o?(E) very large or undefined. We tried to insert in
the GEANE structure some recent developments from the Urban model, see
eq. (69). Since probably at present this aspect is not fully under control, the
results have to be checked carefully for the PANDA detectors and energies.
The interface with GEANE has been modified to be flexible enough to allow
tests and comparisons between the various approaches.

The first tests wih this new GEANE interface have been shown, with
results good enough to allow the application of this track following to the
global fits.

In this context, we have shown how we are implementing the Kalman
filter global fit by using the GEANE track following. The results will be
shown in a forthcoming report.

44



12 Appendices

Appendix A
Infinitesimal rotation matrix between two transverse

reference systems.

Without loss of generality, we can evaluate the transformation in ¢ = 0.
Equation (9), which reads

T COS A COS ¢ cosAsin¢g sin A T
n = —sin ¢ cos ¢ 0 y |, (95)
Z1 —sinAcos¢p —sinAsing cosA z

becomes, to the first order in ¢ = 0:

x| cosA — dAsinA  cosAd¢ sin A+ dAcosA x
v = dé 1 0 Y
2\ —sin A — dAcosA —d¢sinA cos A — dAsin A z
cosA 0 sinA x —sinA 0 cosA
= 0 1 0 y | +dA 0 0 0
—sinA 0 cosA z —cosA 0 —sinA
0 cosA O x
+ do| —1 0 0 Y
0 —sinA 0O z

Inverting (95), i.e. making the transpose for ¢ = 0:

z cosA 0 —sinA T
y | = 0o 1 0 n (97)
z sinA\ 0 cosA ZL

and inserting it in (96) we get

x| 1 00 T 0 01 T
v, | = [0 10 yo |+dx[ 0 0 0 v |+
2, 00 1 21 ~1.0 0 ’
0 cos A 0 T
+ d¢ | —cosA 0 sin A YL (98)
0 —sinA 0 zZ

45



1 d¢cos A dA Ty

= —d¢cos A 1 d¢sin A YL (99)
—dA —d¢sin A 1 Z1
1 dry —dg 1
= —dy 1 tan Ady YL (100)
dg —tan Ady 1 Z1

where the last passage comes putting d\ = —df and d¢cos A = d~.

Appendix B

Calculations for eq.(22)

Let’ s divide, as described in the text, the length L of the track into n small
steps dl = £ and let’ s apply equation (22) for each step

n

(63), = Fu(62)p_aq + (02™);

) e = Fra(0%)p 2a + (62" a
(0Z)p—2ar = Fr_oa(6Z)r—sa + (53_3'M)L—2dz
D) - = Fr-m-na(6%)o + (6Z")—m-1ya

(L = (n—1)dl = dl)

In general (0%),q can be written

(6D)nar = FrlFo—a(6Z)p—sa + (6Z")—a) + (62V)y,
= FrFi_a(0%)p-oa + Fr(67M)—a + (02,
= FiFp_alFr-2a(0%)1—sa + (6Z")1—2a] + FL(6ZM) p—a + (62™)1
= FLFL aFL 2a(62)p-sa + FLFp-a(62™) 1 oa +
+FL(62™) p—a + (62M),,

that can be rewritten (putting L= ndl, and writing F;, = F}, and so on)

(55)[, = FnFn_an_Q...Fl(é.f)o + (a)
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Part (a) can be written:
whereas part(b) becomes:

obtaining equation (22).

Appendix C
Calculation of the 11) error.
With reference to the figure, we have:

( ) + :

s(dp dl

5(%> l+dl — (%? I+dl
o) ‘7

(101)

(102)



1/p

8(1/ p)l+d1

T,

l I+dl
Figure 17: Error propagation on 1/p as a function of the traversed thickness.
The error §(dl) is considered constant. The error on 1/p is different when

moving from [ to (I + dl) as shown in this figure and depends on the range-
momentum relationship.
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Appendix D
Transformation of the magnetic field H

From equation (9)

H,y cosAcos¢  cosAsing sin A H,
Hy, | = —sin ¢ coS ¢ 0 H,
H; —sinAcos¢ —sinAsing cosA H,
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H, = HjcosAcos¢ + Hy,cosAsin¢ + H,sin A
H.

9 = —Hgsing+ Hycos¢
H; = —H;sinAcos¢ — HysinAsin¢ + H, cos A
Hy, = cosA(Hycos¢p+ Hysing) + H,sin\ =
= Hycos A+ H,sin A
Hy, = —H,sin¢+ Hy,cos¢
H; = —sinA(Hycos¢+ Hysing)+ H,cos A =
= —Hysin A+ H,cos A
( H
Hy = Hicos¢p+ Hysing = —CZ—(; = —(—H,cos ¢ — Hysin9)
dH
H, = HycosA+ H,sin\ = —d—; = —(—Hpcos A — H,sin \)
<
. dH, :
Hy, = —H,sin¢g+ Hycos¢ = o = (—H,sin¢ + Hycos §)
. dH, :
\ H; = —Hysin\+ H,cos\ = . (—Hysin A+ H, cos \)
Appendix E

Magnetic field derivatives

Here we calculates the variation:

()
cos A

. For (5(—H2)
. dH, dH,
d(—Hs) D\ o\ — P Y0
dH, . dH
= (j— o sin ¢ — d)\y cosqi)éA—i—Ho(Sqﬁ
0
For 5(Ci3)\):
H; d H; d H;
b = < sy — L
(cos)\) d)\(cos)\) dqﬁ(cos)\)
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( H() )
COS A

Appendix F

dH,

dug cos A + Hizsin A
dx 2 T+ -2 54
Ccos A

cos?Z \
_ —H, +H3tan/\5)\_ Hgsin/\5¢
cos A cos A
H,

S\ — Hytan A 66

o

cosZ \

Hy
—H, tan A

_ 0
- —H;+Hstan A

cos A

)

Variance of the product of independent variables

If X and Y are two independent random variables having density distribution
px(z) and py(y) respectively, the variance of their product is given by:

Var[XY]

/ (zy—

/:r2y2+ <z >i<y>? 2<z><y>zypx(®)py(y)dedy

<z ><y>)’px(z)py(y)dzdy

< ><yP>t<ar><y>? 2<r>icy>?
<?><y?>—<zx>i<cy>?

(024 <z >?) (o4 <y >*)— <z >’<y>?

oiaj+a§<m>2+ai<y>2 .

The relative error is given by:

Var[XY] o2 o;

2 2
T O-w Ui'/

<x >y >?

+
<x>? <y>? <>y >?

and the usual rule of the addition of the relative errors is rediscovred at the
first order when the relative variances are small
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Appendix G

Symbols used in the report

symbol

meaning

I
X=X (a=1,2...5)
fi=f*, (a=1,2...5)

7

z;=2¢,(a=1,2...5)

7 7

CZ

Cy (i,j=1,2...5)
V = (C*)!

Vij (4,7 =1,2...5)
o]

W = (o?)!

T(ls, 1)

7“%j(l%ll) (/['aj = ]-a 2) ey 5)
A; = o[k T (li1, ;) 0 [eiy]

track length

random values of track parameters
true track parameters (mean values)
at detector plane %

measured track parameters

at detector plane %

Kalman-filtered track parameters

at detector plane 7

extrapolated track parameters

at detector plane ¢

measurement covariance matrix
elements of C?

measurement weight matrix

elements of V

track following (tracker) covariance matrix
elements of o2

tracker weight matrix

elements of W

operator (GEANE) for track following
5 x 5 transport matrix from I; to Iy
elements of transport matrix

5 X b smoothing matrix at the i-th plane

0, projected multiple scattering angle
< 012, > variance of the projected
multiple scattering angle, eq. (43)
Table 3: Symbols used in the report.
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