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Folding is a common process in 
physics
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Convolution is a linear folding
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auxiliary variable

The jacobian is

From the general theorem one obtains

by integrating on the auxiliary variable

hence

which is the probability density

Folding
theorem
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Convolution
theorem

For independent variables:

when Z is given by the sum

we have

and we obtain

When X1 and X2 are independent, we obtain 
the convolution integral

In physics

( instrument function, f signal)
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Uniform*Gaussian
When where

one has immediately
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values

= R* +

1D Unfolding
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2D Unfolding



10

Fourier Techniques
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Image Deconvolution
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La PET: tomografia a positroniPET: positron emission thomography
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Image
restoration
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Explanation:

The smeared 
distributions of two input 
distributions cannot be 
distinguished if they 
agree on a large scale of 
x but differ by
oscillations on a 
“microscopic” scale much 
smaller than the 
experimental resolution

or 

to increase the DoF by using

a parametric model

)'|()()|( PPP
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The frequentist
assumes
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Regularization
terms
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What is
MaxEnt ???
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The iterative 
principle

)

(26)
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The iterative 
Principle
without
best fit

Good!



26

The 
iterative 
Principle
without
best fit +
smoothing
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The 
iterative 
Principle
without
best fit

Bad!
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The iterative 
algorithm +
best fit



29

The iterative 
algorithm +
Best fit
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The iterative 
algorithm +
best fit +
regularization
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The iterative 
algorithm +
best fit +
MaxEnt
regularization
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The iterative 
algorithm +
best fit +
Tichonov
regularization
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The iterative 
algorithm +
best fit +
Tichonov
regularization
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The iterative 
algorithm +
best fit +
Tichonov
regularization
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ATHENA experimental set-up
ATHENA apparatus

Silicon micro

strips

CsI

crystals

511 keV

511 keV

Charged tracks to reconstruct antiproton 

annihilation vertex.

Identify 511 keV photons from e+-e-

annihilations.

Identify space and time coincidence of the 

two  with ± 5 mm and 5 s resolution

(Probability of a random coincidence:

0.6% per pbar annihilation without 

considering detection efficiency)
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From the ATHENA detector

Pbar-only 
(with electrons)

x

y

cm
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antihydrogen !!!!!!!!!! FIRST COLD ANTIHYDROGEN PRODUCTION & DETECTION (2002)
M. Amoretti et al., Nature 419 (2002) 456
M. Amoretti et al., Phys. Lett. B 578 (2004) 23

SIGNAL ANALYSIS: 

opening angle
xy vertex distribution

radial vertex distribution

65 % +/- 10% of 
annihilations

are due to antihydrogen

between 2002 & 2004 
more than 2 millions
antihydrogen atoms
have been produced

that’s  about 2 x 10-15 mg
.. or .. 1000 Giga years for a gram

8
110

80
;5.6

190

80
;7.4

110190

80



38

Cold Mix data
Hbar (MC) BCKG

(HotMixData)

Pbar vertex XY projection (cm)

x = 0.65 ± 0.05

x Hbar             +  (1-x) BCKG         =                      Cold Mix

Hbar percentage

Annihilation vertex in the  trap x-y plane

ML  Fit Result
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The vertex algorithm resolution 
function is gaussian with

mm3

The 2D deconvolution reveals
two different annihilation modes

Cold Mix

exp background

Cold Mix data
Iteratve best fit method
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The iterative algorithms +
best fit + regularization

• iterative algorithms are used in 
unfolding (ill posed) problems 

• they need a Bayesian regularization term

• when there are degrees of freedom,one
can use a best fit of a signal+background 
function to the data 

• in this case there are no Bayesian terms
(pure frequentist approach)
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end
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Regularization
parameter
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Conclusions
• best fit minimization methods are crucial 
in physics. They are mainly frequentist

• they are based on the ML and LS algorithms 
(they are implemented in the 
ROOT-MINUIT framework)

• to judge the quality of the result,
frequentists use the test
bayesians use the hypothesis probability

• Bayesian a priori hypotheses should be used with
informative priors!!!
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Image
restoration
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2D Unfolding
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The iterative 
principle
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Unfolding 
techniques

Statistica III


