Pavia 3-4 Apr. 2007

Funzioni di frammentazione in due adroni

Marco Radici

INFN e DFNT – Univ. di Pavia

Dottorato di Ricerca in Fisica – Univ. Pavia – A.A. 2006/07

M. Radici - DiFF

Outline

- 1. Introduzione: OPE \rightarrow I.P.M. \rightarrow approccio diagrammatico
 - \rightarrow teoremi di fattorizzazione
- 2. Frammentazione in 1 adrone: stato dell'arte per $e+e- \rightarrow h + X$; \rightarrow sviluppo in NⁿLO, N^mLL, 1/Q^{t-2}
- 3. Introduzione alle regole del Jet Calculus

- 1. Introduzione
- 2. Frammentazione in 1 adrone
- 3. Jet Calculus

- 1. **OPE**
- 2. Approccio diagrammatico
- 3. Teoremi di fattorizzazione

<u>Preambolo</u>

- teoria delle interazioni forti rinormalizzabile \rightarrow divergenze ultraviolette (UV) cancellate da opportuni controtermini nella \mathcal{L}_{QCD}
- Operator Product Expansion (OPE) $\widehat{A}(x) \widehat{B}(y) \equiv \sum_{i=0}^{\infty} C_i(x-y) \widehat{O}_i\left(\frac{x+y}{2}\right)$ garantisce:
 - eliminazione di patologie nella definizione di $W^{\mu\nu}$ di processi elementari
 - fattorizzazione rigorosa tra fisica a corta e lunga distanza
 - classificazione dei termini dominanti per processi dominati da cinematica sul Light-Cone (LC)
 - contiene l'asymptotic freedom, assunta nel Parton Model (PM), ma non produce confinamento
 - sottoprodotto: regola di somma di momento

$$M_F^n(Q^2) \leftrightarrow C_n(Q^2, \mu_F) \langle P | \hat{O}_{\mu_1 \dots \mu_n}(0, \mu_F) | P \rangle$$

dati calcolo reticolo

- 1. Introduzione
- 2. Frammentazione in 1 adrone
- 3. Jet Calculus

- 1. OPE
- 2. Approccio diagrammatico
- 3. Teoremi di fattorizzazione

1. Introduzione

- 2. Frammentazione in 1 adrone
- 3. Jet Calculus

- 1. OPE
- 2. Approccio diagrammatico
- 3. Teoremi di fattorizzazione

- Teoremi di fattorizzazione *ad hoc* per ciascun processo:
 - $\left. \begin{array}{c} e^+ e^- \rightarrow h + X \\ \gamma^* p \rightarrow h + X \end{array} \right\}$
 - $H_1 H_2 \rightarrow I_1 I_2 + X$

Ellis et al., N.P. **B152** (79) 285 Amati, Petronzio, Veneziano, N.P. **B140** (78) 54 Altarelli, Ellis, Martinelli, Pi, N.P. **B160** (79) 301 Furmanski e Petronzio, Z.P. **C11** (82) 293

Collins, Soper, Sterman, N.P. B250 (85) 199

- Generalizzati per includere dinamica non collineare (transverse momentum dependent parton distributions – TMD):
 - e⁺ e⁻ → h + X Collins e Soper, N.P. **B193** (81) 381
 - $\varphi^* p \rightarrow h + X$

Collins e Soper, N.P. **B193** (81) 381 Collins e Metz, P.R.L. **93** (04) 252001 Ji, Ma, Yuan, P.R. D**71** (05) 034005

- 1. Introduzione
- 2. Frammentazione in 1 adrone
- 3. Jet Calculus

- 1. Calcolo nel Parton Model (LO)
- 2. Calcolo al NLO
- 3. Large Logs
- 4. Stato dell'arte per $e+e- \rightarrow h + X$

- 1. Introduzione
- 2. Frammentazione in 1 adrone
- 3. Jet Calculus

- 1. Calcolo nel Parton Model (LO)
- 2. Calcolo al NLO
- 3. Large Logs
- 4. Stato dell'arte per $e+e- \rightarrow h + X$

$$d\sigma = \frac{1}{\mathcal{F}} |\mathcal{M}|^2 dR \qquad \mathcal{F} = 4\sqrt{(k \cdot k')^2 - k^2 k'^2} = 2Q^2 \equiv 2s$$

$$dR = (2\pi)^4 \delta(q - P_X - P_h) \frac{dP_X}{(2\pi)^3 2P_X^0} \frac{dP_h}{(2\pi)^3 2E_h}$$

$$L_{\mu\nu} = -2(k_\mu k'_\nu + k'_\mu k_\nu - k \cdot k' g_{\mu\nu})$$

$$|\mathcal{M}|^2 = \frac{e^4}{Q^4} L_{\mu\nu} H^{\mu\nu} + \sum_{S_X} \langle 0|J^{\mu}|P_X, P_h\rangle \langle P_X, P_h|J^{\nu}|0\rangle$$

$$d\hat{\sigma} = \frac{1}{\mathcal{F}} |\hat{\mathcal{M}}|^2 d\hat{R} \quad d\hat{R} = dR(P_X \leftrightarrow P_1, P_h \leftrightarrow P_2)$$

$$\hat{H}^{\mu\nu} = e_q^2 \operatorname{Tr} [\bar{u}\gamma^{\mu}v \, \bar{v}\gamma^{\nu}u]$$

$$\otimes$$

$$D^{q \to h}(z) \quad \text{decay function}$$

- 1. Introduzione
- 2. Frammentazione in 1 adrone
- 3. Jet Calculus

- 1. Calcolo nel Parton Model (LO)
- 2. Calcolo al NLO
- 3. Large Logs
- 4. Stato dell'arte per $e+e- \rightarrow h + X$

$$\begin{array}{c} \mathbf{q} & \mathbf{\bar{q}} \\ \mathbf{\bar{q}} \mathbf{$$

- 1. Introduzione
- 2. Frammentazione in 1 adrone
- 3. Jet Calculus

- 1. Calcolo nel Parton Model (LO)
- 2. Calcolo al NLO
- 3. Large Logs
- 4. Stato dell'arte per $e+e- \rightarrow h + X$

Oltre il PM: $O(\alpha_s) \Leftrightarrow Next-to-Leading Order (NLO)$

- 1. Introduzione
- 2. Frammentazione in 1 adrone
- 3. Jet Calculus

- 1. Calcolo nel Parton Model (LO)
- 2. Calcolo al NLO
- 3. Large Logs
- 4. Stato dell'arte per $e+e- \rightarrow h + X$

regolarizzazione dimensionale D=4- ϵ alla scala fittizia μ_D

$$\frac{1}{\sigma^{NLO}} \frac{d\sigma^{NLO}}{dz} = \frac{1}{\hat{\sigma}^{NLO}} \frac{d\hat{\sigma}^{NLO}}{dz} \otimes D(z)$$

$$= \sum_{ij} e_i^2 \left\{ \delta(1-z) \left[1 + \frac{\alpha_s}{2\pi} P_{ij} \left(\log \frac{Q^2}{\mu_D^2} - \frac{1}{\epsilon} + \gamma_E - \log(4\pi) \right) \right] + \frac{\alpha_s}{2\pi} f_{ij}(z) \right\} \otimes D_j(z)$$

$$= \sum_{ij} e_i^2 \frac{\alpha_s}{2\pi} f_{ij}(z) \otimes D_j^{NLO}(z)$$

$$= D_i^{NLO}(z) = \sum_j D_j(z) \otimes \delta(1-z) \left\{ 1 + \frac{\alpha_s}{2\pi} P_{ij} \left(\log \frac{Q^2}{\mu_D^2} - \frac{1}{\epsilon} + \gamma_E - \log(4\pi) \right) \right\}$$

$$= \frac{1}{\hat{\sigma}^{NLO}} \frac{d\hat{\sigma}^{NLO}}{dz} \Big|_{reg.} \otimes D^{NLO}(z)$$

divergenze collineari assorbite in D, universale e incognita; schema MS

- cancellazione di scala fittizia μ_D e dipendenza da scala fattorizzazione $\mu_F^2=Q^2$
- indipendenza della fisica da μ_{F} : evoluzione di d σ^{el} e D deve compensarsi

$$\frac{d\,d\sigma^{NLO}}{d\log\mu_F^2} = 0 \implies \frac{dD_i^{NLO}}{d\log Q^2} = \frac{\alpha_s}{2\pi} \sum_j P_{ij} \otimes D_j^{NLO}$$

te

e

g g

- 1. Introduzione
- 2. Frammentazione in 1 adrone
- 3. Jet Calculus

- 1. Calcolo nel Parton Model (LO)
- 2. Calcolo al NLO
- 3. Large Logs
- 4. Stato dell'arte per $e+e- \rightarrow h + X$

però questa classificazione può non essere sufficiente!

M. Radici - DiFF

- 1. Introduzione
- 2. Frammentazione in 1 adrone
- 3. Jet Calculus

- 1. Calcolo nel Parton Model (LO)
- 2. Calcolo al NLO
- 3. Large Logs
- 4. Stato dell'arte per $e+e- \rightarrow h + X$

Esempio: fattorizzazione di quark pesante con massa m_q calcolo di $d\sigma^{\hat{NLO}}$ non richiede μ_D ma m_q, che fa da I.R. cut-off

$$\sim \dots \frac{\alpha_s}{2\pi} P_{ij} \log \frac{Q^2}{m_q^2} \dots \equiv \frac{P_{ij}}{2\pi b_0} \left(\log \frac{Q^2}{\Lambda_{QCD}^2} \right)^{-1} \log \frac{Q^2}{m_q^2} \sim \text{const}$$

serie non converge!

Altri esempi: $H_1 H_2 \rightarrow jet_1 jet_2 + X$ con largo $p_T \ll \sqrt{s}$

$$H_1 H_2 \rightarrow H_1 H_2 + X \text{ con largo } p_T << Q$$

$$\frac{1}{2\pi} \log \frac{1}{p_T^2} \sim 1$$

 $\alpha_s(Q^2)$ s

$$rac{lpha_s(Q^2)}{2\pi} \log rac{Q^2}{p_T^2} \sim 1$$

importanza di altre scale "semi-dure" rispetto a Q² in processi S.I. \rightarrow analizzare spettro di molti adroni in frammentazione singola

- 1. Introduzione
- 2. Frammentazione in 1 adrone
- 3. Jet Calculus

- 1. Calcolo nel Parton Model (LO)
- 2. Calcolo al NLO
- 3. Large Logs
- 4. Stato dell'arte per $e+e- \rightarrow h + X$

Prima di considerare la frammentazione in multiadroni, rivediamo l'esempio della frammentazione del quark pesante m_a:

a scala Q produzione > frammentazione di q massless > frammentazione di di q massless $\mu \sim Q$ in q con $m_a \neq 0$ $\mu_0 \sim m_a$ q con $m_a \neq 0$ in h $d\sigma(Q, m_q) = d\widehat{\sigma}(Q, \mu) \otimes E(\mu, \mu_0) \otimes D(\mu_0, m)$ cosicché scale $\mu \sim Q \gg \mu_0 \sim m_q$ sono fittizie; invarianza della fisica $\frac{d(d\sigma)}{d\log u^2} = 0$ $\rightarrow \text{equazioni di evoluzione DGLAP di E:} \begin{cases} \frac{dE_i(\mu, \mu_0)}{d \log \mu^2} = -\frac{\alpha_s(\mu)}{2\pi} P_{ij} \otimes E_j(\mu, \mu_0) \\ E(\mu_0, \mu_0) = 1 \end{cases}$ Konishi, Ukawa, Veneziano N.P. **B157** (79) 45

- 1. Introduzione
- 2. Frammentazione in 1 adrone
- 3. Jet Calculus

Pavia 3/4/07

- 1. Calcolo nel Parton Model (LO)
- 2. Calcolo al NLO
- 3. Large Logs
- 4. Stato dell'arte per $e+e- \rightarrow h + X$

funzione di frammentazione perturbativa di un q in un q

 $\frac{dE_i(\mu,\mu_0)}{d\log\mu^2} = -\frac{\alpha_s(\mu)}{2\pi}P_{ij} \otimes E_j(\mu,\mu_0) \quad \text{taking 1 loop} \quad \alpha_s(\mu) = \frac{1}{b_0\log\frac{\mu^2}{\Lambda_{QCD}^2}}$ $\log E(\mu,\mu_0) = 1 \quad \text{in generale include } \alpha_s^n \log^n \frac{1}{\Lambda_{QCD}^2}$ \rightarrow risommazione collineare $E(\mu, \mu_0) = \left[\frac{\alpha_s(\mu_0)}{\alpha_s(\mu)}\right]^{P^{(0)}/2\pi b_0} \qquad \text{al Lead} \\ \text{taking 2 loops}$ al Leading Logarithm (LL) $E(\mu,\mu_0) = \left[\frac{\alpha_s(\mu_0)}{\alpha_s(\mu)}\right]^{P^{(0)}/2\pi b_0} \times \exp\left\{\frac{\alpha_s(\mu_0) - \alpha_s(\mu)}{4\pi^2 b_0} \left(P^{(1)} - \frac{2\pi b_1}{b_0}P^{(0)}\right)\right\}$ include $\alpha_s^n \log^{n-1} \rightarrow r$ isommazione collineare al Vale anche per risommazione di radiazione Next-to-Leading Logarithm (NLL) soffice (Sudakov) LL $\alpha_s^n \left[\log^{2n-1}(1-x)/(1-x) \right]$ **NLL** $\alpha_s^n \left[\log^{2n-2}(1-x)/(1-x) \right]$ Mele e Nason, N.P. **B361** (91) 626 Cacciari e Greco, NP. **B421** (94) 530 Bonciani et al., N.P. **B529** (98) 424

- Introduzione 1
- 2. Frammentazione in 1 adrone
- 3. Jet Calculus

- Calcolo nel Parton Model (LO) 1.
- 2. Calcolo al NLO
- 3. Large Logs
- 4. Stato dell'arte per $e+e- \rightarrow h + X$

Situazione: $d\hat{\sigma}(e^+e^- \rightarrow q\bar{q})$ nota a O(α_s^2) Rijken e van Neerven, P.L. **B386** (96) 422 time-like P_{ii} anche a O(α_{a}^{3}) per osservabili non-singlet h, Vogt, P.L. **B638** (06) 61 $E \frac{d^3 \sigma^{\pi}}{dp^3}$ [mb / GeV²] $\mathbb{E} \frac{\mathrm{d}^3 \sigma^{\pi}}{\mathrm{d} \mathfrak{p}^3}$ [mb/GeV² 10 NLO fit BRAHMS data BRAHMS data 10 $\eta = 2.95$ n = 2.95de Florian, Sassot, Stratmann 10 hep-ph/0703242 10 THIS FIT -5 10 - KRE scale uncertainty 10 1.5 (data - theory)/theory 0.5 -0.5 3 4 PT [GeV] 4 5 2

FIG. 5: upper panels comparison of our NLO results for single-inclusive charged pion production $pp \to \pi^{\pm} X$ at rapidity $\eta = 2.95$ (solid lines) with BRAHMS data [21] using $\mu_f = \mu_r = p_T$. Also shown are the results obtained with the KRE [7] parametrization (dashed lines). The shaded bands indicate theoretical uncertainties when all scales are varied in the range $p_T/2 \leq \mu_f = \mu_r \leq 2p_T$. lower panels "(data-theory)/theory" for our NLO results.

PT [GeV]

- 1. Introduzione
- 2. Frammentazione in 1 adrone
- 3. Jet Calculus
- 4. Frammentazione in 2 adroni
- 5. 2h SIDIS

- 1. Calcolo nel Parton Model (LO)
- 2. Calcolo al NLO
- 3. Large Logs
- 4. Stato dell'arte per $e+e- \rightarrow h + X$

Ricapitolando:

- funzione di frammentazione perturbativa E^{q→ q} risomma contributi collineari e soft da large logs → introduce nuovo ordine di precisione: O(α_sⁿ) = NⁿLO O(1/Qⁿ) = twist 2+n O(α_sⁿ logⁿ) = LL O(α_sⁿ logⁿ⁻¹) = NLL
- introduce nuova formulazione dell'evoluzione, adatta all'applicazione ricorsiva del processo di branching con le regole del Jet Calculus Per α_s a 1 loop \rightarrow LL, si ottiene Konishi, Ukawa, Veneziano

$$D^{i \to h}(z, Q^{2}) = \sum_{j} E_{i}^{j}(Q^{2}, Q_{0}^{2}) \otimes D^{j \to h}(z, Q_{0}^{2})$$

$$Y = \frac{1}{2\pi b_{0}} \log \frac{\alpha_{s}(Q_{0}^{2})}{\alpha_{s}(Q^{2})}$$
rapidity
$$\frac{dE_{i}^{j}(z, Y)}{dY} = \sum_{m} E_{m}^{j}(z, Y) \otimes P_{mi}^{(0)}$$

$$\alpha_{s}(Q^{2}) = \frac{1}{b_{0}} \log \frac{Q^{2}}{\Lambda_{QCD}^{2}}$$

$$b_{0} = \frac{11N_{c} - 2N_{f}}{12\pi}$$

- 1. Introduzione
- 2. Frammentazione in 1 adrone
- 3. Jet Calculus

1. Frammentazione in 1 adrone

2. Frammentazione in 2 adroni

- 1. Introduzione
- 2. Frammentazione in 1 adrone
- 3. Jet Calculus

- 1. Frammentazione in 1 adrone
- 2. Frammentazione in 2 adroni

