Soluzione generale dell'equazione di Schrödinger

- ullet H non dipende da t
- \Rightarrow soluzione a variabili separate: $\Psi(\mathbf{r},t) = u(\mathbf{r}) T(t)$

$$i\hbar \frac{\partial \Psi}{\partial t} = H\Psi \quad \rightarrow \quad i\hbar \frac{1}{T} \frac{dT}{dt} = \frac{1}{u}Hu \quad (\equiv E)$$

$$\Rightarrow i \hbar \frac{dT}{dt} = E T(t)$$

$$H u(\mathbf{r}) = E u(\mathbf{r})$$

$$T(t) = c e^{-iEt/\hbar}$$

 $u(\mathbf{r}) = \text{una soluzione di } Hu = Eu$ per la stessa E

$$\int d\mathbf{r} |\Psi(\mathbf{r},t)|^2 = 1 \quad \Rightarrow \quad \int d\mathbf{r} |u(\mathbf{r})|^2 = 1 \quad (|c| = 1)$$

• soluzione particolare: $\Psi(\mathbf{r},t) = u(\mathbf{r}) e^{-iEt/\hbar}$

in generale: $H u_n(\mathbf{r}) = E_n u_n(\mathbf{r})$

• soluzione generale: $\Psi({m r},t)=\sum_n a_n\,u_n({m r})\,e^{-iE_nt/\hbar}$

principio di sovrapposizione lineare