Riassunto della lezione precedente

 DIS polarizzato : proprietà generali di S^µ; tensore adronico e struttura antisimmetrica; due nuove funzioni di struttura; ampiezza di scattering e funzioni di struttura polarizzate; sezione d'urto e strategia di estrazione delle funz. struttura

- asimmetrie di elicità "teoriche" legate a risposte di interferenza rispetto alla polarizzazione del γ^{*} scambiato; scaling delle asimmetrie
- asimmetrie di elicità "teoriche" \rightarrow sperimentali
- QPM picture: \rightarrow distribuzione di elicità
 - \rightarrow distribuzione di spin trasverso
 - \rightarrow relazione di Wandzura-Wilczek
 - \rightarrow regola di somma di Burkhardt-Cottingham

Distribuzione di polarizzazione trasversa

procedura simile $\tilde{G}_1(x_B) + \tilde{G}_2(x_B) \equiv g_1(x_B) + g_2(x_B) = \frac{1}{2Mx_B} \sum_{f,\bar{f}} e_f^2 m_f \left[q_f^{\rightarrow}(x_B) - q_f^{\leftarrow}(x_B) \right]$

risulta
$$-\frac{g_1(x)}{x} = \frac{\partial}{\partial x}[g_1(x) + g_2(x)]$$
relazione di Wandzura–Wilczek
$$g_2(x) = \int_x^1 \frac{dy}{y}g_1(y) - g_1(x)$$
regola di somma Burkhardt–Cottingham
$$\int_0^1 dxg_2(x) = 0$$
e in generale
$$\int_0^1 dx \ x^{J-1} \left[\frac{J-1}{J}g_1(x) + g_2(x)\right] = 0$$

24-Nov-14

Distribuzione di elicità e misura dello spin

In generale $g_1(x_B,Q^2)$: dipendenza da Q^2 (= violazione dello scaling) calcolabile in QCD perturbativa interesse in $g_1(x_B,Q^2)$ è dovuto al fatto che il suo 1º momento di Mellin fornisce informazioni sull' elicità dei quark ed inoltre è calcolabile su reticolo

1º momento di Mellin di g₁

$$\Gamma_1(Q^2) = \int_0^1 dx \, g_1(x, Q^2) = \frac{1}{2} \sum_{f, \bar{f}} e_f^2 \int_0^1 dx \, (q_f^{\uparrow}(x, Q^2) - q_f^{\downarrow}(x, Q^2)) = \frac{1}{2} \sum_{f \bar{f}} e_f^2 \, \Delta q_f$$
$$\Delta q_f = \int_0^1 dx \, (q_f^{\uparrow}(x, Q^2) - q_f^{\downarrow}(x, Q^2))$$

exp.
$$\rightarrow A_{\parallel} \rightarrow A_1 \ (A_2 \sim 0) \rightarrow g_1 \ (x_B, Q^2) \rightarrow \Gamma_1(Q^2) \rightarrow \Delta q_f$$

1 relazione per f ≥ 3 incognite !

(continua)

in QPM per protone :
$$\Gamma_1^p = \frac{1}{2} \left(\frac{4}{9} \Delta u + \frac{1}{9} \Delta d + \frac{1}{9} \Delta s \right)$$

QPM : funz. d' onda del q in P^{\uparrow} "ispirata" a SU_f(3) \otimes SU(2)

$$|P^{\uparrow}\rangle \approx \frac{1}{\sqrt{6}} \left(2u^{\uparrow} u^{\uparrow} d^{\downarrow} - u^{\uparrow} u^{\downarrow} d^{\uparrow} - u^{\downarrow} u^{\uparrow} d^{\uparrow} \right) \xrightarrow{} \Gamma_{1}{}^{\mathsf{p}} = 5/18 \sim 0.28$$
$$\Delta \Sigma = 1$$

3 incognite \rightarrow info da corrente assiale $A_{\mu}{}^{a} \sim \gamma_{\mu}\gamma_{5}T^{a}$ in decadimenti semi-leptonici (ex. β decay) nell' ottetto barionico Risulta

$$\Gamma_{1}^{p} = \int_{0}^{1} dx \, g_{1}^{p}(x) \sim \frac{1}{12} \langle A_{\mu}^{3} \rangle \left[1 + \frac{5}{3} \frac{\langle A_{\mu}^{8} \rangle}{\langle A_{\mu}^{3} \rangle} \right] = \frac{1}{12} \left| \frac{g_{A}}{g_{V}} \right|_{np} \left[1 + \frac{5}{3} \frac{3F - D}{F + D} \right]$$

= 0.17 ± 0.01

 $\Delta \Sigma = 3F - D = 0.60 \pm 0.12$

da fit a decadimenti semi-leptonici \rightarrow F= 0.47 ± 0.004 ; D=0.81± 0.003

regola di somma di Ellis-Jaffe ('73) (hp.= perfetta simmetria $SU_f(3) + \Delta s = 0$) 24-Nov-14

correzioni complicate

Esperimento EMC (CERN, '87)

Spin crisis

F,D, $\Gamma_1^{p}(Q^2) \rightarrow \Delta \Sigma(Q^2) \rightarrow \Delta u, \Delta d, \Delta s$

× E142 + E143-p • E143-d • SMC-d(92) \times SMC-d(94) \square SMC-p \times EMC

6

(spin crisis continua)

$$\begin{array}{c|c} & \overbrace{G_A}^{G_A} \stackrel{\mathsf{QPM}}{=} \frac{5}{3} \leftrightarrow 1.6667 \pm 0.003 \\ & \text{exp.} & 1.267 \pm 0.004 \end{array}$$

Componente trasversa del momento del partone

se $p_T \neq 0$ $\gamma^{*\uparrow} q^{\uparrow}$, $\gamma^{*\downarrow} q^{\downarrow}$ permesse

ad esempio per 1 flavor solo con q^{\uparrow} in $\sigma_{Jz}^{\ \lambda}$ ($\gamma^{*}q^{\uparrow}$)

Sum rule :	QPM	+ pQCD	exp.
	0.27778	0.191 ± 0.002	0.209 ± 0.003
24-Nov-14			