Riassunto lezione precedente

- Evidenza spettroscopica di multipletti quasi degeneri; organizzabili in gruppi separati secondo simmetria SU(2) di isospin, con lieve rottura di degenerazione per interazione elettromagnetica; necessità di introdurre nuovo numero quantico stranezza S per raccordare questi gruppi
- secondo SU(3) mesoni organizzati in nonetti pseudoscalari e vettoriali;
 barioni organizzati in ottetto e decupletto a parità + e singoletto a parità –;
 nello spettro, ad alta energia segnali di rottura di una simmetria legata a P (simmetria chirale?)
- Gell-Mann & Zweig ('63): ipotesi di simmetria a livello più basso, basata su struttura più elementare, i quarks; si giustificano osservazioni spettroscopiche, ma non si evidenzia mai il tripletto di SU(3): i quark sono reali?
- cenni di teoria dei gruppi: il caso SU(2), le matrici di Pauli;
 definizione e proprietà dei generatori di SU(N); operatore di Casimir e classificazione dei multipletti.

SU(2): esempio isospin

rappresentazione fondamentale a dim. 2:
$$I=\frac{1}{2}$$
 C = $\frac{3}{4}$ doppietto p ($I_3=+\frac{1}{2}$) n ($I_3=-\frac{1}{2}$) rappresentazione regolare a dim. 2²-1=3: $I=1$ C = 2 tripletto π^{\pm} ($I_3=\pm 1$) π^0 ($I_3=0$)

Hamiltoniana
$$\mathcal{H} = \mathcal{H}_{str} + \mathcal{H}_{em}$$

indipendenza della forza forte dalla carica → invarianza per iso-rotazioni [\mathcal{H}_{etr} , I_i] = 0 i=1,2,3 degenerazione multipletti

operatore di carica
$$Q = \frac{1}{2}B + I_3$$
 \Rightarrow $[\mathcal{H}_{em}, I_i] \neq 0$ rottura (piccola) della degenerazione simmetria di isospin è approssimata

SU(2): rappresentazione coniugata

rappresentazione fondamentale a dim. 2

$$\chi = \left| \begin{array}{c} u \\ d \end{array} \right| = u(I_3 = +\tfrac{1}{2}) \left| \begin{array}{c} 1 \\ 0 \end{array} \right| + \left| d(I_3 = -\tfrac{1}{2}) \right| \left| \begin{array}{c} 0 \\ 1 \end{array} \right| \qquad \text{Ex: isospin } \ \mathbf{u} = \mathbf{p} \ , \ \ \mathbf{d} = \mathbf{n} \ .$$

rappresentazione coniugata 2* $\phi = \begin{vmatrix} d \\ \overline{u} \end{vmatrix}$ $\begin{vmatrix} I_3 = +\frac{1}{2} \\ I_3 = -\frac{1}{2} \end{vmatrix}$

$$\phi = \begin{vmatrix} \overline{d} \\ \overline{u} \end{vmatrix} \quad |_{3} = +\frac{1}{2}$$

$$|_{3} = -\frac{1}{2}$$

Ex: \overline{p} , \overline{n}

trasformazione per iso-rotazione θ intorno a \hat{y} $\chi' = U \chi$

$$\chi' = U \chi$$

$$U \equiv e^{\frac{1}{2}i\theta \hat{\mathbf{y}} \cdot \tau}$$

N.B. matrici di Pauli $\sigma = \tau$ per isospin

se rappresentazione coniugata definita come $\phi = \left| \begin{array}{c} d \\ -\overline{u} \end{array} \right| \Rightarrow \phi' = U \phi$

$$\phi = \left| \begin{array}{c} \overline{d} \\ -\overline{u} \end{array} \right| \Rightarrow \phi' = U \phi$$

cioè rappresentazioni 2 ⇔ 2* in generale N 📂 N*

SU(2): rappresentazione regolare

rappresentazione fondamentale dim. 2: generatori σ , algebra $\left[\frac{1}{2}\sigma_i, \frac{1}{2}\sigma_j\right] = i\varepsilon_{ijk} \frac{1}{2}\sigma_k$ per SU(N) rappresentazione fondamentale ha dim. N e generatori matrici NxN

rappresentazione regolare ha dim. = nr. dei generatori = N²-1 per N=2 dim. =3, generatori **S** sono matrici 3x3 con algebra $[S_i, S_j] = i\varepsilon_{ijk} S_k$ rappresentazione più comune

$$S_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \quad S_2 = \frac{i}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} \quad S_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

 S_3 diagonale: base canonica $|\pi^+>\equiv \begin{bmatrix} 1\\0\\0 \end{bmatrix}, |\pi^0>\equiv \begin{bmatrix} 0\\1\\0 \end{bmatrix}, |\pi^->\equiv \begin{bmatrix} 0\\0\\1 \end{bmatrix}$

base "iso-vettoriale" $|\pi_1>=-\frac{1}{\sqrt{2}}\left(|\pi^+>-|\pi^->\right), |\pi_2>=\frac{i}{\sqrt{2}}\left(|\pi^+>+|\pi^->\right), |\pi_3>\equiv |\pi^0>$

costruzione della rappresentazione attraverso costanti di struttura dell'algebra:

$$\langle \pi_j \mid S_i \mid \pi_k \rangle = -i \epsilon_{ijk}$$

vale in generale per SU(N) con M generatori

SU(3): proprietà generali

gruppo delle trasformazioni unitarie U tali per cui $\chi' = U\chi$

$$\chi = \left| \begin{array}{c} u \\ d \\ s \end{array} \right|$$

U sono matrici unitarie 3x3 del tipo $U=\mathrm{e}^{\frac{1}{2}\mathrm{i}\theta\hat{\mathbf{n}}\cdot\lambda}$

8 generatori della trasformazione: 8 matrici 3x3 hermitiane a traccia nulla Ie matrici di Gell-Mann λ

$$\lambda_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \lambda_2 = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 sottogruppo SU(2) di isospin " I – spin" su (u,d)

$$\lambda_4 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \lambda_5 = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix}$$
 sottogruppo " V – spin" su (u,s)

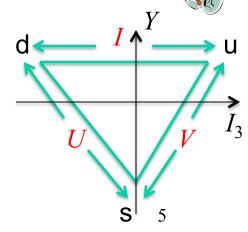
$$\lambda_6 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \lambda_7 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix}$$
 sottogruppo " U – spin" su (d,s)

sottogruppo "
$$U$$
 – spin" su (d,s)

$$\lambda_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \lambda_8 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$

operatore operatore $Y = \frac{2}{\sqrt{3}} \frac{1}{2} \lambda_8$ ipercarica

$$Y = \frac{2}{\sqrt{3}} \frac{1}{2} \lambda_8$$



SU(3): classificazione multipletti e operatore di Casimir

definiamo
$$F_i = \frac{1}{2}\lambda_i$$
 . Algebra: $[F_i, F_j] = i \ f_{ijk} \ F_k$, $\{F_i, F_j\} = \frac{4}{3} \ \delta_{ij} + 4 \ d_{ijk} \ F_k$ costanti di SU(3):
$$f_{123} = 1 \ , \ f_{458} = f_{678} = \sqrt{3}/2 \qquad d_{118} = d_{228} = d_{338} = -d_{888} = 1/\sqrt{3}$$

$$f_{147} = f_{246} = f_{257} = f_{345} = f_{516} = f_{637} = \frac{1}{2}$$

$$d_{146} = d_{157} = d_{256} = d_{344} = d_{355} = \frac{1}{2}$$

$$d_{247} = d_{366} = d_{377} = -\frac{1}{2}$$

$$d_{448} = d_{558} = d_{668} = d_{778} = -\frac{1}{2}\sqrt{3}$$

operatore di Casimir

SU(2):
$$I_1 = \frac{1}{2} \sigma_1$$
 $C = (I)^2 = \frac{1}{2} (I_+ I_- + I_- I_+) + (I_3)^2 = \frac{1}{2} \{I_+, I_-\} + (I_3)^2$

SU(3):
$$F_i = \frac{1}{2} \lambda_i$$
 $C = (\mathbf{F})^2 = \sum_{i=1}^8 F_i F_i = \frac{1}{2} \{I_+, I_-\} + \frac{1}{2} \{V_+, V_-\} + \frac{1}{2} \{U_+, U_-\} + (F_3)^2 + (F_8)^2$

autovalore di C è $\frac{1}{3}$ (p²+pq+q²)+(p+q) p,q ε \mathbf{N}_{+}

$I_{\pm} = F_1 \pm i$	F_2
$V_{\pm} = F_4 \pm i$	
$U_{\pm}^{-} = F_{6}^{+} \pm$	

(p,q)	\mathbf{F}^2
(0,0)	0
(1,0)	4/3
(0,1)	4/3
(1,1)	3
(2,0)	10/3
	(0,0) (1,0) (0,1)

3 🗯 3* because of Y

Quarks e rappresentazioni SU(N)

supponiamo barioni = $\{qqq\}$ e mesoni = $\{q\overline{q}\}$

sapore	up u	down d	strange s
nr. barionico B	1/3	1/3	1/3
isospin I	1/2	1/2	0
I_3	+1/2	-1/2	0
ipercarica Y	1/3	1/3	-2/3
carica Q	+2/3	-1/3	-1/3
stranezza S	0	0	-1

$$Y = B + S$$

$$Q = I_3 + \frac{1}{2}Y$$

servono almeno 2 flavors u,d per distinguere p da n

gruppo

 $SU(2)_I$

servono almeno 3 flavors u,d,s per distinguere p da Σ^+ $SU(3)_f$

gruppo

Spettro barionico e simmetria degli stati

barioni = $\{qqq\}$ q = u,d,s (per ora non importa ordine: uds \Leftrightarrow dsu \Leftrightarrow sud...)

quark	simmetria	carica	stranezza	stati	come distinguere?
uuu	S	2	0	Δ++	
uud	SM	1	0	Δ+ p	p da Δ+ 🗲
udd	SM	0	0	Δ^0 n	n da Δ ⁰ ←
ddd	S	-1	0	Δ-	
uus	SM	1	-1	Σ+ Σ*+	←
uds	SMMA	0	-1	$\Sigma_0 \Sigma_{*0} V_0 V$	←
dds	SM	-1	-1	Σ- Σ*-	←
uss	SM	0	-2	≣0 ≡*0	←
dss	SM	-1	-2	⊒- Ξ*-	←
 SSS	S	-1	-3	Ω-	

ora ordine conta: dato $\{qqq\}$ con q=u,d,s si può sempre costruire un $S \rightarrow 10$ dato $\{qqq'\}$ o $\{qq'q''\}$ si può avere simm. mista $M \rightarrow 8$ ($\{qq'q''\}$ ha 2 "modi" diversi \rightarrow M M) dato $\{qq'q''\}$ si può avere un A ($\{qq'q''\}=-\{q'qq''\}$ per ogni coppia) \rightarrow 1

Rappresentazioni di SU(2)

Rappresentazione fondamentale (dim. 2): $|\chi\rangle=\left|\begin{array}{c} u \\ d \end{array}\right|$

2 oggetti : $|\chi_1\rangle$, $|\chi_2\rangle$

X ₁ >	X ₂ >	scambio 1 <-> 2		
u	u	uu		
u	d	4//0//	1/√2 (ud-du)	
d	u	1/√2 (ud+du)	17 V2 (uu-uu)	
d	d	dd		
		S	Α	

$$|S_{1} S_{1z}; S_{2} S_{2z} \rangle \Leftrightarrow |S S_{z} \rangle$$

$$|\frac{1}{2} \frac{1}{2}; \frac{1}{2} \frac{1}{2} \rangle \Leftrightarrow |1 1 \rangle$$

$$1/\sqrt{2} [|\frac{1}{2} \frac{1}{2}; \frac{1}{2} - \frac{1}{2} \rangle + \Leftrightarrow |1 0 \rangle$$

$$|\frac{1}{2} - \frac{1}{2}; \frac{1}{2} \frac{1}{2} \rangle = |1 1 \rangle$$

$$1/\sqrt{2} [|\frac{1}{2} \frac{1}{2}; \frac{1}{2} - \frac{1}{2} \rangle + \Leftrightarrow |0 0 \rangle$$

$$|\frac{1}{2} - \frac{1}{2}; \frac{1}{2} \frac{1}{2} \rangle = |1 1 \rangle$$

$$\mathbf{2}\otimes\mathbf{2}=\mathbf{3}_S\oplus\mathbf{1}_A$$

notazione di teoria di gruppo

Ex:
$$S_1 = \frac{1}{2}$$
 $S_2 = \frac{1}{2}$ \Rightarrow $S = 100$

$$\frac{1}{2}\otimes\frac{1}{2}=$$
 $\mathbf{1}_S\oplus\mathbf{0}_A$

3 oggetti : $|\chi_1\rangle$, $|\chi_2\rangle$, $|\chi_3\rangle$

$ \chi_1> \chi_2> \chi_3>$	scambio 1 ⇔ 2			
uuu	uuu			3/2
uud, udu, duu	1/√3 (uud+udu+duu)	1/√2 (ud-du)u	1/√6 [(ud+du)u - 2 uud]	1/2
udd, dud, ddu	1/√3 (udd+dud+ddu)	1/√2 (ud-du)d	-1/√6 [(ud+du)d - 2 ddu]	-1/2
ddd	ddd			-3/2
	S	M_A	M_S	

antisimmetrico simmetrico in 1⇔2 ma non definito negli altri

Ex:
$$S_1 = \frac{1}{2} S_2 = \frac{1}{2} S_3 = \frac{1}{2}$$
 $(S_{12} = 1 S_3 = \frac{1}{2}) + (S_{12} = 0 S_3 = \frac{1}{2})$
 $\Rightarrow S = \frac{3}{2} o \frac{1}{2} S_3 + S = \frac{1}{2} S_4$
 $(\frac{1}{2} \otimes \frac{1}{2}) \otimes \frac{1}{2} = 1 \otimes \frac{1}{2} + 0 \otimes \frac{1}{2} = \frac{3}{2} S \oplus \frac{1}{2} S \oplus \frac{1}{2} S_4$
 $(2 \otimes 2) \otimes 2 = (3 \otimes 2) \oplus (1 \otimes 2) = 4_S \oplus 2_{M_S} \oplus 2_{M_A}$

Rappresentazioni di SU(3)

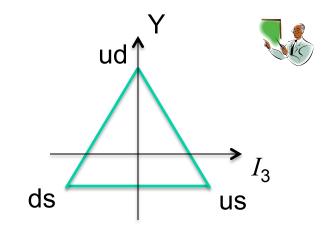
Rappresentazione fondamentale (dim. 3): $|\chi\rangle=\left|egin{array}{c} u \ d \ s \end{array}\right|$

2 oggetti : $|\chi_1\rangle$, $|\chi_2\rangle$

X ₁ >	X ₂ >	scambio 1 <-> 2		
u	u	uu		
u	d			
d	u	1/√2 (ud+du)	1/√2 (ud-du)	
d	d	dd		
u	S	1/2/2 (40+04)	1/√2 (us-su)	
S	u	1/√2 (us+su)	1/ VZ (us-su)	
d	S	,	,	
S	d	1/√2 (ds+sd)	1/√2 (ds-sd)	
S	S	SS		
		S	Α	

$${f 3}\otimes {f 3}= {f 6}_S\oplus {f \overline 3}_A$$

stati A sono 3 perché



3 oggetti : $|\chi_1\rangle$, $|\chi_2\rangle$, $|\chi_3\rangle$

$ \chi_1> \chi_2> \chi_3>$	scambio 1 ⇔ 2				spettro
uuu	uuu				Δ++
uud, udu, duu	1/√3 (uud+udu+duu)	1/√6 [(ud+du)u-2uud]	1/√2 (ud-du)u		$\Delta^+(S)$ p(M)
udd, dud, ddu	$1/\sqrt{3}$ (udd+dud+ddu)	-1/√6 [(ud+du)d-2ddu]	1/√2 (ud-du)d		$\Delta^0(S)$ n(M)
ddd	ddd				Δ-
uus, usu, suu	1/√3 (uus+usu+suu)	1/√6 [(us+su)u-2uus]	1/√2 (us-su)u		$\Sigma^{*+}(S) \Sigma^{+}(M)$
uds	1/√6 (uds+usd+dus +sud+dsu+sdu)	$1/2\sqrt{3}$ [s(du+ud) + usd+dsu-2(du+ud)s]	1/2 [(usd+dsu) - s(ud+du)]	1/√6 [s(du-ud) + usd-dsu + (du-ud)s]	$\Sigma^{\star 0}(S) \Sigma^{0}(M) \ \Lambda_{1405}(A)$
		1/2 [(dsu-usd) + s(ud-du)]	1/2√3 [s(du-ud) + usd-dsu-2(du-ud)s]	` ´ ·	Λ º(M)
dds, dsd, sdd	1/√3 (dds+dsd+sdd)	1/√6 [(ds+sd)d-2dds]	1/√2 (ds-sd)d		$\Sigma^{*-}(S)$ $\Sigma^{-}(M)$
ssu, sus, uss	1/√3 (ssu+sus+uss)	-1/√6 [(us+su)s-2ssu]	1/√2 (us-su)s		$\Xi^{*0}(S) \Xi^{0}(M)$
ssd, sds, dss	1/√3 (ssd+sds+dss)	-1/√6 [(ds+sd)s-2ssd]	1/√2 (ds-sd)s		Ξ*-(S) Ξ-(M)
SSS	SSS				Ω-(S)
	S	M_S	M_A	Α	

$$(\mathbf{3}\otimes\mathbf{3})\otimes\mathbf{3}=ig(\mathbf{6}\oplus\overline{\mathbf{3}}ig)\otimes\mathbf{3}=(\mathbf{10}_S\oplus\mathbf{8}_{M_S})\oplus(\mathbf{8}_{M_A}\oplus\mathbf{1}_A)$$

SU(N) e i tableaux di Young

.... c'è una procedura automatica per calcolare le dimensioni delle rappresentazioni irriducibili?

I tableaux di Young

identificazione rappresentazioni di SU(N)

tableaux di Young: prodotto di rappresentazioni

N = ?

come calcolare le dimensioni delle rappresentazioni prodotto?

numeratore =
$$\begin{bmatrix} N & N+1 & N+2 \\ N-1 & N & N+1 \\ N-2 & N-1 & N \\ N-3 & N-3 \end{bmatrix}$$
 = prodotto dei numeri in tutte le caselle

denominatore = prodotto dei "ganci" di tutte le caselle

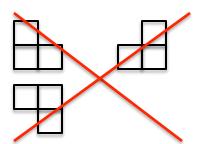
quindi dim.
$$\square$$
 \otimes \square = \square \oplus \square $=\frac{N(N+1)}{2}\oplus\frac{N(N-1)}{2}$

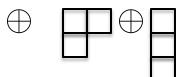
<u>continua</u>

$$\square \otimes \square \otimes \square = (\square \square \oplus \square) \otimes \square ?$$

si combinano le caselle in tutti i modi purché

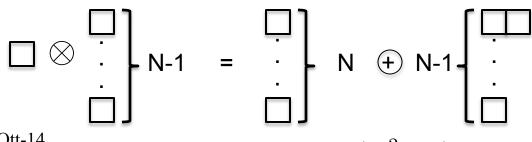
- no figure concave verso l'alto
- no figure concave verso il basso a sinistra





$$N \otimes N \otimes N = \frac{N(N+1)(N+2)}{6} \oplus \frac{(N-1)N(N+1)}{3} \oplus \frac{(N-1)N(N+1)}{3} \oplus \frac{N(N-1)(N-2)}{6}$$

per strutture mesoniche, cioè "quarkonio"



$$N \otimes N^* = 1 \oplus (N^2 - 1)$$