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Objectives: Become familiar with some of the basic techniques used for measuring gamma rays with
a sodium iodide (NaI) detector that is thallium (Tl) activated.
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Apparatus:

Bin and power supply

NaI(Tl) crystal and phototube assembly

Amplifier (Ortec 575 or equivalent)

High voltage power supply (Ortec 456 or equivalent)

Multichannel analyzer (MCA) (TN7200) and personal computer

Radioactive sources: 137Cs, 60Co, 22Am

Important: During this experiment, always remember that you are working with ra-
dioactive sources. You can not begin this experiment until you have discussed how to safely
handle the radioactive sources. Always wash your hands after working with any radioactive
source. When working with the sources, always use the tweezers provided and ensure that the
radiation safety signs provided are posted in the relevant area. WHEN THE RADIOACTIVE
LOCKBOX IS NOT IN USE, IT MUST BE LOCKED.

Introduction: Most isotopes that are used for γ-ray measurements also have β-particles in their
decay schemes. The typical decay scheme for the isotope will include a β-decay to a particular level followed
by a γ-ray emmission to the ground state of the final isotope. The β-particles will usually be absorbed in
the surrounding material and not enter the scintillator at all, but this absorption is normally assured with
aluminum absorbers. For this experiment, the β-particles offer no real problem and absorbers are therfore
not necessary. There will be some β-particle absorption by the light shield over the phototube, but the
γ-rays are quite penetrating and will therefore pass easily through the light aluminum shield.

Generally there are two unknowns for a given γ-source that we would like to investigate. One is the
energies of the γ-rays from the source, while the other is the number of γ-rays that leave the source per
unit of time (activity). In this experiment, the student will become familiar with some of the basic NaI(Tl)
measurements associated with γ-ray emitting unknowns.
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Figure 1: Electronic block diagram for γ-ray spectroscopy system with NaI(Tl) detector.

Experiment: This experiment will be broken up into a series of exercises, each of which should
be completed by the student. Before beginning the exercises, the student should become familiar with the
computer’s multichannel analyzer. For this experiment, the MCA will be run as a pulse-height analyzer
(PHA), where each channel (or bin) corresponds to a small range of energies. Each event in the detector
produces a voltage proportional to the energy of the γ-ray which caused the event. The event is then added
to the channel corresponding to its voltage (energy) range, and the resulting spectrum is thus a plot of
intensity (number of counts) versus voltage (energy).

Exercise I - Energy Calibration: In this exercise, the 0.662 MeV photopeak from 137Cs and
the 1.17 and 1.33 MeV photopeaks from 60Co are used to calibrate the NaI(Tl) detection system.

1. Set up the electronics as shown in Figure 1. There are two parameters that ultimately determine the
overall gain of the system: the high voltage that is furnished to the phototube and the gain of the linear
amplifier. Ther gain of the photomultiplier tube is quite dependent on its high voltage. A general rule
for most phototubes is that a 10% change of the high voltage will change the gain by a factor of 2.
The high voltage value depends on the phototube being used.

2. Set the high voltage to 900 V.

3. Set the amplifer for positive input and bipolar output.

4. To set up the MCA, see the operating manual for the TN7200.

5. Place the 137Cs source ∼ 10 cm in front of the NaI(Tl) crystal.

6. Adjust the coarse and fine gain controls of the linear amplifier so that the 0.662 MeV photopeak for
137Cs falls at approximately channel 280. For the illustrations shown in Figure 2, the gain of the system
has been set so that 1 MeV falls at about channel 420 to 425. Since the system is linear, 2 MeV would
therefore fall at ∼ channel 840-850. Do not change the high voltage or amplifier gain until the exercise
is completed.

7. Accumulate the 137Cs spectrum long enough to determine the peak position. Note the channel number
for the photopeak, Compton edge and backscatter peak. Dump the spectrum to a file on the computer.
Note that all files should be saved to the D: drive on the computer, as any files saved to the C: drive
will be automatically erased when the computer is rebooted!

8. Replace the 137Cs source by the 60Co and accumulate the spectrum. A sample spectrum is shown in
Figure 3. Again note the channel numbers for the photopeaks, Compton edge and backscatter peak.
Store the spectrum as a file on the computer.

9. Make a plot of the photopeak energies for 137Cs and 60Co versus channel number and generate a
calibration curve with which you can convert channel number to energy for later exercises.

2



Exercise II - Analyses of the 137Cs and 60Co Gamma-Ray Spectra: The purpose
of this exercise is to explain some of the features, other than the photopeaks, that are usually present in a
pulse-height spectrum. These are the Compton edge and the backscatter peak.

The Compton interaction is a pure kinematic collision between a γ-ray photon and what might be termed
a free electron in the NaI(Tl) crystal. By this process, the incident γ-ray gives up only part of its energy to
the electron. The amount given to the recoil electron (and the intensity of the light flash) depends on whether
the collison is head-on or glancing. For a head-on collision, the γ-ray imparts the maximum allowable energy
for the Compton interaction. The energy of the scattered γ-ray can be determined by solving the energy
and momentum equations for this billiard ball collision. The solution for these equations in terms of the
scattered γ-ray can be written approximately as:

Eγ′ ∼=
Eγ

1 + 2|Eγ |(1 − cos θ)
(1)

where Eγ′ is the energy of the scattered γ-ray in MeV, Eγ is the energy of the incident γ-ray in MeV, |Eγ |
is the dimensionless magnitude of the incident γ-ray and θ is the scattering angle for γ

′
. The student should

derive the above equation to verify that it is correct. If θ = 180◦ due to a head-on collision in which γ
′

is
scattered directly back, Eq. 1 becomes:

Eγ′ ∼=
Eγ

1 + 4Eγ
(2)

As an example, we will calculate Eγ′ for an incident γ-ray energy of 1 MeV:

Figure 2: Typical 137Cs spectrum measured using a NaI(Tl) detector.
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Figure 3: Typical 60Co spectrum measured using a NaI(Tl) detector.

Eγ′ ∼=
1MeV

1 + 4Eγ
= 0.20MeV (3)

The energy of the recoil electron, Ec, for this collision would be 0.80 MeV. This is true since

Ec = Eγ − Eγ′ (4)

Then the position of the Compton edge, which is the maximum energy that can be imparted to an electron
by the Compton interaction, can be calculated using Eq. 4.

Backscatter occurs when γ-rays make Compton interactions in the material surrounding the detector.
Figure 4 demonstrates the various events that can take place in a typical source-NaI(Tl)-lead shield arrange-
ment. Backscattered γ-rays from these interactions (Eγ′ ) make photoelectric interactions in the NaI(Tl)
when they enter the crystal. The energy of the backscattered peack can be found by solving Eq. 2.

1. Calculate the energy of the Compton edge for the 0.662 MeV γ-rays from 137Cs. Using the channel
number for the edge and your calibration chart, does the measured value agree with the calculation?

2. Solve Eq. 2 for the backscattered γ-rays from 137Cs and for the 1.33 MeV γ-rays from 60Co and compare
with the measured energies.

Exercise III - Energy Resolution: The resolution of a spectrometer is a measure of its ability
to resolve two peaks that are fairly close together in energy. Figure 2 shows the γ spectrum that was plotted
for the 137Cs source. The resolution of the photopeak is found by solving the following equation:
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Figure 4: Various events in the vicinity of a typical source-crystal detector-shield configuration.

R =
δE

E
x 100% (5)

where R is the resolution (in percent), δE is the full width of the peak at half of the maximum count level
(FWHM) measured in number of channels and E is the channel number at the centroid of the photopeak.
In Figure 2, the photopeak is in channel 280 and the FWHM = 32 channels. From Eq. 5, the resolution is
calculated to be 11.5%.
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1. Calculate the resolution of the system from your 137Cs spectrum.

Exercise IV - The Activity of a γ-Emitter: Another unknown associated with the gamma
source is the activity of the source, which is usually measured in Curies (Ci), where 1 Ci = 3.7 x 1010

disintigrations per second. Most of the sources that are used in nuclear laboratory experiments have activities
of the order of microcuries (µCi).

1. Place the 137Cs source 9.3 cm away from the face of the detector.

2. Accumulate a spectrum for a fixed length of time t.

3. Determine the sum under the photopeak, ΣCs, referring to the manual for the multichannel analyzer
if necessary.

4. Erase the spectrum, remove the source and accumulate the background for the same length of time t
and determine Σref.

5. Use the formula below to caclulate the activity of the source.

Activity =
(

ΣCs − Σref
t

)
1

Gεpf
(6)

where t is the live time in seconds, εp is the intrinsic peak efficiency for the gamma energy and detector
size used, f is the decay fraction of the unknown activity which is a fraction of the total disintegrations in
which the measured gamma is emitted (see Figure 6), G is the area of the detector in cm2/(4πd2

s) and ds

is the source-to-detector distance in cm. You will need to use Figure 5 to determine εp, but note that the
detector you are using is not represented, so you will have to extrapolate the needed values as best you can.

Figure 5: Intrinsic peak efficiency of various NaI(Tl) crystals versus γ-energy.
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Figure 6: Gamma decay fraction f for some common isotopes.

Exercise V - The Mass Absorption Coefficient: In this exercise, the student will measure
experimentally the mass absorption coefficient in lead for 662 keV γ-rays.

The references point out that γ-rays interact in matter primarily by photoelectric, Compton, or pair-
production interactions. The total-mass absorption coefficient µ can be easily measured with a γ-ray spec-
trometer. In this exercise, we will measure the number of γ-rays that are removed from the photopeak by
the photoelectric or Compton interactions that occur in a lead absorber placed between the source and the
phototube.

From Lambert’s law, the decrease in intensity of radiation as it passes through an absorber is given by:

I = Io exp(−µχ) (7)

where Io is the intensity before the addition of the absorber, I is the intensity after the addition of the
absorber and χ is the density thickness in g/cm2. The density thickness is the product of the density (in
g/cm3) and the thickness (in cm).

The half-value layer (HVL) is defined as the density thickness of the absorbing material that reduces the
original intensity Io by 50%. Using Eq. 7, it is a relatively simple matter to show that:

HVL =
0.693

µ
(8)

In this experiment, we will measure µ in lead for the 0.662 MeV γ-rays emitted by 137Cs. The accepted
value is 0.105 cm2/g.

1. Place the 137Cs source about 5.0 cm from the NaI(Tl) detector and accumulate the spectrum long
enough for the sum under the 0.662 MeV peak (ΣCs - Σref) to be at least 6000 counts. Determine
(ΣCs - Σref).

2. Erase the MCA and insert a piece of lead from the absorber kit between the source and the detector.
Accumulate the spectrum for the same period of live time as in Step 1 above. Determine (ΣCs - Σref).

3. Erase the MCA and insert another piece of lead. Determine (ΣCs - Σref). Repeat with additional
thicknesses of lead until the count-sum is < 1000.

4. On a semilog scale, plot the intensity I versus absorber thickness in mg/cm2, where I = (ΣCs -
Σref)/live time. Determine the HVL from this curve and calculate µ from Eq. 8. How does your value
compare with the accepted value of 0.105 cm2/g?

5. Repeat the above exercise using aluminum absorbers. Compare your experimenally measured value
for µ with the accepted value of 0.074 cm2/g.
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Figure 7: Decay scheme for 60Co

Exercise VI - Sum Peak Analysis: Figure 3 shows the two pronounced peaks in 60Co. Figure 7
shows the decay scheme of 60Co. Most of the time, the decay occurs by β-particle emission to the 2.507
MeV excited state of 60Ni. Subsequent decay to the ground state always occurs by γ-ray emission to the
1.3325 MeV level (a 1.174 MeV γ-ray), followed almost instantaneously by the 1.3325 MeV γ-ray emission
to the ground state. These two events are in coincidence and have an angular correlation that deviates from
an isotropic distribution by only 16%. For the purposes of this exercise, we can assume that each of these
γ-rays are isotropically distributed. In other words, if γ1 goes in a particular direction, γ2 can go in any of
the 4π steradians that it wishes. There is a certain probability that it will go in the same direction as γ1. If
this occurs within the resolving time of the detector, γ1 and γ2 will be summed and hence a sum peak will
show up in the spectrum. The number of counts under the γ1 photopeak is given by:

Σγ1 = ε1Gf1tA (9)

where A is the activity of the sample and t is the time. In a similar calculation, the sum under the photopeak
corresponding to γ2 is:

Σγ2 = ε2Gf2tA (10)

From Eqs. 9 and 10, the number of counts in the sum peak, Σs is given by:

Σs = ε1ε2G
2f1f2tA[W (0◦)] (11)

where W (0◦) is a term that accounts for the angular correlation function. For the case of 60Co, Eq. 11
reduces to:

(
Σs

)

60Co
= ε1ε2G

2tA (12)

since W (0◦) ∼= 1.0.
In this experiment, we will show that the sum peak for 60Co has an energy of 2.507 MeV and that its

sum is given by Eq. 12.

1. Set up the apparatus as shown in Figure 1.

2. Use the 137Cs and 60Co sources to calibrate the MCA such that the full scale is ∼ 3.0 MeV. For 1024
channels, this would put the 137Cs (0.662 MeV) photopeak at approximately channel 225.

3. Construct a calibration curve as in Exercise I.

4. Place the 60Co source from the source kit at exactly 9.3 cm from the face of the detector. Acquire
a spectrum for a period of time that is sufficiently long that the area under the sum peak is ∼ 1000
counts. This procedure was outlined in Exercise IV.
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Figure 8: Decay scheme for 22Na (inset) and typical spectrum measured using NaI(Tl) detector.

5. Verify that the energy of the sum peak is 2.507 MeV. Subtract the background from the sum peak and
verify its sum from Eq. 12.

6. Repeat this sum peak analysis for the 22Na source. Figure 8 shows the decay scheme for 22Na and a
typical spectrum with the sum peak.
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